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Locations

The project and download pages of ngspice may be found at

Ngspice home page http://ngspice.sourceforge.net/

Project page at sourceforge http://sourceforge.net/projects/ngspice/

Download page at sourceforge http://sourceforge.net/projects/ngspice/files/

Git source download http://sourceforge.net/scm/?type=cvs&group_id=38962

Status

This manual is a work in progress. Some to-dos are listed in the following. More is surely
needed. You are invited to report bugs, missing items, wrongly described items, bad English
style etc.

To Do

1. Review of chapt. 1.3

2. hfet1,2 model descriptions

How to use this manual

The manual is a “work in progress”. It may accompany a specific ngspice release, e.g. ngspice-
24 as manual version 24. If its name contains “Version xxplus”, it describes the actual code
status, found at the date of issue in the Git Source Code Management (SCM) tool. The manual is
intended to provide a complete description of the ngspice functionality, its features, commands,
or procedures. It is not a book about learning spice usage, but the novice user may find some
hints how to start using ngspice. Chapter 21.1 gives a short introduction how to set up and
simulate a small circuit. Chapter 32 is about compiling and installing ngspice from a tarball or
the actual Git source code, which you may find on the ngspice web pages. If you are running a
specific LINUX distribution, you may check if it provides ngspice as part of the package. Some
are listed here.

http://ngspice.sourceforge.net/
http://sourceforge.net/projects/ngspice/
http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/scm/?type=cvs&group_id=38962
http://ngspice.sourceforge.net/download.html
http://ngspice.sourceforge.net/packages.html
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Prefaces

Preface to the first edition

This manual has been assembled from different sources:

1. The spice3f5 manual,

2. the XSPICE user’s manual,

3. the CIDER user’s manual

and some original material needed to describe the new features and the newly implemented
models. This cut and paste approach, while not being orthodox, allowed ngspice to have a full
manual in a fraction of the time that writing a completely new text would have required. The use
of LaTex and Lyx instead of TeXinfo, which was the original encoding for the manual, further
helped to reduce the writing effort and improved the quality of the result, at the expense of an
on-line version of the manual but, due to the complexity of the software I hardly think that users
will ever want to read an on-line text version.

In writing this text I followed the cut of spice3f5 manual, both in the chapter sequence and
presentation of material, mostly because that was already the user manual of spice.

Ngspice is an open source software, users can download the source code, compile, and run it.
This manual has an entire chapter describing program compilation and available options to help
users in building ngspice (see chapt. 32). The source package already comes with all “safe”
options enabled by default, and activating the others can produce unpredictable results and thus
is recommended to expert users only. This is the first ngspice manual and I have removed all
the historical material that described the differences between ngspice and spice3, since it was
of no use for the user and not so useful for the developer who can look for it in the Changelogs
of in the revision control system.

I want to acknowledge the work dome Emmanuel Rouat and Arno W. Peters for converting to
TEXinfo the original spice3f documentation, their effort gave ngspice users the only available
documentation that described the changes for many years. A good source of ideas for this
manual comes from the on-line spice3f manual written by Charles D.H. Williams (Spice3f5
User Guide), constantly updated and useful for some insight that he gives in it.

As always, errors, omissions and unreadable phrases are only my fault.

Paolo Nenzi

Roma, March 24th 2001
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Indeed. At the end of the day, this is engineering, and one learns to live
within the limitations of the tools.

Kevin Aylward , Warden of the Kings Ale

Preface to the actual edition (as of January 2013)

Due to the wealth of new material and options in ngspice the actual order of chapters has been
revised. Several new chapters have been added. The LYX text processor has allowed adding
internal cross references. The PDF format has become the standard format for distribution of
the manual. Within each new ngspice distribution (starting with ngspice-21) a manual edition
is provided reflecting the ngspice status at the time of distribution. At the same time, located
at ngspice manuals, the manual is constantly updated. Every new ngspice feature should enter
this manual as soon as it has been made available in the Git source code.

Holger Vogt

Mülheim, 2013

http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-manuals/
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Chapter 1

Introduction

Ngspice is a general-purpose circuit simulation program for nonlinear and linear analyses. Cir-
cuits may contain resistors, capacitors, inductors, mutual inductors, independent or dependent
voltage and current sources, loss-less and lossy transmission lines, switches, uniform distributed
RC lines, and the five most common semiconductor devices: diodes, BJTs, JFETs, MESFETs,
and MOSFETs.

Some introductory remarks on how to use ngspice may be found in chapter 21.

Ngspice is an update of Spice3f5, the last Berkeley’s release of Spice3 simulator family. Ngspice
is being developed to include new features to existing Spice3f5 and to fix its bugs. Improving
a complex software like a circuit simulator is a very hard task and, while some improvements
have been made, most of the work has been done on bug fixing and code refactoring.

Ngspice has built-in models for the semiconductor devices, and the user need specify only the
pertinent model parameter values. There are three models for bipolar junction transistors, all
based on the integral-charge model of Gummel and Poon; however, if the Gummel-Poon param-
eters are not specified, the basic model (BJT) reduces to the simpler Ebers-Moll model. In either
case and in either models, charge storage effects, ohmic resistances, and a current-dependent
output conductance may be included. The second bipolar model BJT2 adds dc current com-
putation in the substrate diode. The third model (VBIC) contains further enhancements for
advanced bipolar devices.

The semiconductor diode model can be used for either junction diodes or Schottky barrier
diodes. There are two models for JFET: the first (JFET) is based on the model of Shichman
and Hodges, the second (JFET2) is based on the Parker-Skellern model. All the original six
MOSFET models are implemented: MOS1 is described by a square-law I-V characteristic,
MOS2 [1] is an analytical model, while MOS3 [1] is a semi-empirical model; MOS6 [2] is a
simple analytic model accurate in the short channel region; MOS9, is a slightly modified Level
3 MOSFET model - not to confuse with Philips level 9; BSIM 1 [3, 4]; BSIM2 [5] are the
old BSIM (Berkeley Short-channel IGFET Model) models. MOS2, MOS3, and BSIM include
second-order effects such as channel-length modulation, subthreshold conduction, scattering-
limited velocity saturation, small-size effects, and charge controlled capacitances. The recent
MOS models for submicron devices are the BSIM3 (Berkeley BSIM3 web page) and BSIM4
(Berkeley BSIM4 web page) models. Silicon-on-insulator MOS transistors are described by the
SOI models from the BSIMSOI family (Berkeley BSIMSOI web page) and the STAG [18] one.
There is partial support for a couple of HFET models and one model for MESA devices.
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Ngspice supports mixed-level simulation and provides a direct link between technology param-
eters and circuit performance. A mixed-level circuit and device simulator can provide greater
simulation accuracy than a stand-alone circuit or device simulator by numerically modeling the
critical devices in a circuit. Compact models can be used for noncritical devices. The mixed-
level extensions to ngspice are two:

• CIDER: a mixed-level circuit and device simulator integrated into ngspice code. CIDER
was originally the name of the mixed-level extension made to spice3f5.

• GSS: GSS (now called GENIUS) TCAD is a 2D simulator developed independently from
ngspice. The device simulator itself is free and not included into ngspice, but a socket
interface is provided.

Ngspice supports mixed-signal simulation through the integration of XSPICE code into it.
XSPICE software, developed as an extension to Spice3C1 from GeorgiaTech, has been ported
to ngspice to provide “board” level and mixed-signal simulation.

New devices can be added to ngspice by two means: the XSPICE code-model interface and the
ADMS interface based on Verilog-A and XML.

Finally, numerous small bugs have been discovered and fixed, and the program has been ported
to a wider variety of computing platforms.

1.1 Simulation Algorithms

Computer-based circuit simulation is often used as a tool by designers, test engineers, and
others who want to analyze the operation of a design without examining the physical circuit.
Simulation allows you to change quickly the parameters of many of the circuit elements to
determine how they affect the circuit response. Often it is difficult or impossible to change
these parameters in a physical circuit.

However, to be practical, a simulator must execute in a reasonable amount of time. The key to
efficient execution is choosing the proper level of modeling abstraction for a given problem. To
support a given modeling abstraction, the simulator must provide appropriate algorithms.

Historically, circuit simulators have supported either an analog simulation algorithm or a digital
simulation algorithm. Ngspice inherits the XSPICE framework and supports both analog and
digital algorithms and is a “mixed-mode” simulator.

1.1.1 Analog Simulation

Analog simulation focuses on the linear and non-linear behavior of a circuit over a continuous
time or frequency interval. The circuit response is obtained by iteratively solving Kirchhoff’s
Laws for the circuit at time steps selected to ensure the solution has converged to a stable value
and that numerical approximations of integrations are sufficiently accurate. Since Kirchhoff’s
laws form a set of simultaneous equations, the simulator operates by solving a matrix of equa-
tions at each time point. This matrix processing generally results in slower simulation times
when compared to digital circuit simulators.
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The response of a circuit is a function of the applied sources. Ngspice offers a variety of
source types including DC, sine-wave, and pulse. In addition to specifying sources, the user
must define the type of simulation to be run. This is termed the “mode of analysis”. Analysis
modes include DC analysis, AC analysis, and transient analysis. For DC analysis, the time-
varying behavior of reactive elements is neglected and the simulator calculates the DC solution
of the circuit. Swept DC analysis may also be accomplished with ngspice. This is simply the
repeated application of DC analysis over a range of DC levels for the input sources. For AC
analysis, the simulator determines the response of the circuit, including reactive elements to
small-signal sinusoidal inputs over a range of frequencies. The simulator output in this case
includes amplitudes and phases as a function of frequency. For transient analysis, the circuit
response, including reactive elements, is analyzed to calculate the behavior of the circuit as a
function of time.

1.1.2 Digital Simulation

Digital circuit simulation differs from analog circuit simulation in several respects. A primary
difference is that a solution of Kirchhoff’s laws is not required. Instead, the simulator must only
determine whether a change in the logic state of a node has occurred and propagate this change
to connected elements. Such a change is called an “event”.

When an event occurs, the simulator examines only those circuit elements that are affected by
the event. As a result, matrix analysis is not required in digital simulators. By comparison,
analog simulators must iteratively solve for the behavior of the entire circuit because of the
forward and reverse transmission properties of analog components. This difference results in
a considerable computational advantage for digital circuit simulators, which is reflected in the
significantly greater speed of digital simulations.

1.1.3 Mixed-Mode Simulation

Modern circuits often contain a mix of analog and digital circuits. To simulate such circuits
efficiently and accurately a mix of analog and digital simulation techniques is required. When
analog simulation algorithms are combined with digital simulation algorithms, the result is
termed “mixed-mode simulation”.

Two basic methods of implementing mixed-mode simulation used in practice are the “native
mode” and “glued mode” approaches. Native mode simulators implement both an analog algo-
rithm and a digital algorithm in the same executable. Glued mode simulators actually use two
simulators, one of which is analog and the other digital. This type of simulator must define an
input/output protocol so that the two executables can communicate with each other effectively.
The communication constraints tend to reduce the speed, and sometimes the accuracy, of the
complete simulator. On the other hand, the use of a glued mode simulator allows the component
models developed for the separate executables to be used without modification.

Ngspice is a native mode simulator providing both analog and event-based simulation in the
same executable. The underlying algorithms of ngspice (coming from XSPICE and its Code
Model Subsystem) allow use of all the standard SPICE models, provide a pre-defined collection
of the most common analog and digital functions, and provide an extensible base on which to
build additional models.
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1.1.3.1 User-Defined Nodes

Ngspice supports creation of “User-Defined Node” types. User-Defined Node types allow you
to specify nodes that propagate data other than voltages, currents, and digital states. Like digital
nodes, User-Defined Nodes use event-driven simulation, but the state value may be an arbitrary
data type. A simple example application of User-Defined Nodes is the simulation of a digital
signal processing filter algorithm. In this application, each node could assume a real or integer
value. More complex applications may define types that involve complex data such as digital
data vectors or even non-electronic data.

Ngspice digital simulation is actually implemented as a special case of this User-Defined Node
capability where the digital state is defined by a data structure that holds a Boolean logic state
and a strength value.

1.1.4 Mixed-Level Simulation

Ngspice can simulate numerical device models for diodes and transistors in two different ways,
either through the integrated DSIM simulator or interfacing to GSS TCAD system. DSIM is
an internal C-based device simulator which is part of the CIDER simulator, the mixed-level
simulator based on spice3f5. CIDER within ngspice provides circuit analyses, compact models
for semiconductor devices, and one- or two-dimensional numerical device models.

1.1.4.1 CIDER (DSIM)

DSIM provides accurate, one- and two-dimensional numerical device models based on the so-
lution of Poisson’s equation, and the electron and hole current-continuity equations. DSIM
incorporates many of the same basic physical models found in the Stanford two-dimensional
device simulator PISCES. Input to CIDER consists of a SPICE-like description of the circuit
and its compact models, and PISCES-like descriptions of the structures of numerically modeled
devices. As a result, CIDER should seem familiar to designers already accustomed to these
two tools. CIDER is based on the mixed-level circuit and device simulator CODECS, and is a
replacement for this program. The basic algorithms of the two programs are the same. Some of
the differences between CIDER and CODECS are described below. The CIDER input format
has greater flexibility and allows increased access to physical model parameters. New physical
models have been added to allow simulation of state-of-the-art devices. These include trans-
verse field mobility degradation important in scaled-down MOSFETs and a polysilicon model
for poly-emitter bipolar transistors. Temperature dependence has been included over the range
from -50C to 150C. The numerical models can be used to simulate all the basic types of semi-
conductor devices: resistors, MOS capacitors, diodes, BJTs, JFETs and MOSFETs. BJTs and
JFETs can be modeled with or without a substrate contact. Support has been added for the
management of device internal states. Post-processing of device states can be performed using
the ngnutmeg user interface.

1.1.4.2 GSS TCAD

GSS is a TCAD software which enables two-dimensional numerical simulation of semiconduc-
tor device with well-known drift-diffusion and hydrodynamic method. GSS has Basic DDM



1.2. SUPPORTED ANALYSES 37

(drift-diffusion method) solver, Lattice Temperature Corrected DDM solver, EBM (energy bal-
ance method) solver and Quantum corrected DDM solver which based on density-gradient the-
ory. The GSS program is directed via input statements by a user specified disk file. Supports
triangle mesh generation and adaptive mesh refinement. Employs PMI (physical model inter-
face) to support various materials, including compound semiconductor materials such as SiGe
and AlGaAs. Supports DC sweep, transient and AC sweep calculations. The device can be
stimulated by voltage or current source(s).

GSS is no longer updated, but is still available as open source as a limited edition of the com-
mercial GENIUS TCAD tool.

1.2 Supported Analyses

The ngspice simulator supports the following different types of analysis:

1. DC Analysis (Operating Point and DC Sweep)

2. AC Small-Signal Analysis

3. Transient Analysis

4. Pole-Zero Analysis

5. Small-Signal Distortion Analysis

6. Sensitivity Analysis

7. Noise Analysis

Applications that are exclusively analog can make use of all analysis modes with the exception
of Code Model subsystem that do not implements Pole-Zero, Distortion, Sensitivity and Noise
analyses. Event-driven applications that include digital and User-Defined Node types may make
use of DC (operating point and DC sweep) and Transient only.

In order to understand the relationship between the different analyses and the two underlying
simulation algorithms of ngspice, it is important to understand what is meant by each analysis
type. This is detailed below.

1.2.1 DC Analyses

The dc analysis portion of ngspice determines the dc operating point of the circuit with inductors
shorted and capacitors opened. The dc analysis options are specified on the .DC, .TF, and .OP
control lines.

There is assumed to be no time dependence on any of the sources within the system description.
The simulator algorithm subdivides the circuit into those portions which require the analog
simulator algorithm and those which require the event-driven algorithm. Each subsystem block
is then iterated to solution, with the interfaces between analog nodes and event-driven nodes
iterated for consistency across the entire system.



38 CHAPTER 1. INTRODUCTION

Once stable values are obtained for all nodes in the system, the analysis halts and the results
may be displayed or printed out as you request them.

A dc analysis is automatically performed prior to a transient analysis to determine the transient
initial conditions, and prior to an ac small-signal analysis to determine the linearized, small-
signal models for nonlinear devices. If requested, the dc small-signal value of a transfer function
(ratio of output variable to input source), input resistance, and output resistance is also computed
as a part of the dc solution. The dc analysis can also be used to generate dc transfer curves: a
specified independent voltage, current source, resistor or temperature1 is stepped over a user-
specified range and the dc output variables are stored for each sequential source value.

1.2.2 AC Small-Signal Analysis

AC analysis is limited to analog nodes and represents the small signal, sinusoidal solution of the
analog system described at a particular frequency or set of frequencies. This analysis is similar
to the DC analysis in that it represents the steady-state behavior of the described system with a
single input node at a given set of stimulus frequencies.

The program first computes the dc operating point of the circuit and determines linearized,
small-signal models for all of the nonlinear devices in the circuit. The resultant linear circuit
is then analyzed over a user-specified range of frequencies. The desired output of an ac small-
signal analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit
has only one ac input, it is convenient to set that input to unity and zero phase, so that output
variables have the same value as the transfer function of the output variable with respect to the
input.

1.2.3 Transient Analysis

Transient analysis is an extension of DC analysis to the time domain. A transient analysis be-
gins by obtaining a DC solution to provide a point of departure for simulating time-varying
behavior. Once the DC solution is obtained, the time-dependent aspects of the system are rein-
troduced, and the two simulator algorithms incrementally solve for the time varying behavior of
the entire system. Inconsistencies in node values are resolved by the two simulation algorithms
such that the time-dependent waveforms created by the analysis are consistent across the entire
simulated time interval. Resulting time-varying descriptions of node behavior for the specified
time interval are accessible to you.

All sources which are not time dependent (for example, power supplies) are set to their dc value.
The transient time interval is specified on a .TRAN control line.

1.2.4 Pole-Zero Analysis

The pole-zero analysis portion of Ngspice computes the poles and/or zeros in the small-signal
ac transfer function. The program first computes the dc operating point and then determines
the linearized, small-signal models for all the nonlinear devices in the circuit. This circuit is

1Temperature (TEMP) and resistance sweeps have been introduced in Ngspice, they were not available in the
original code of Spice3f5.
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then used to find the poles and zeros of the transfer function. Two types of transfer functions
are allowed: one of the form (output voltage)/(input voltage) and the other of the form (output
voltage)/(input current). These two types of transfer functions cover all the cases and one can
find the poles/zeros of functions like input/output impedance and voltage gain. The input and
output ports are specified as two pairs of nodes. The pole-zero analysis works with resistors,
capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs
and diodes. Transmission lines are not supported. The method used in the analysis is a sub-
optimal numerical search. For large circuits it may take a considerable time or fail to find all
poles and zeros. For some circuits, the method becomes "lost" and finds an excessive number
of poles or zeros.

1.2.5 Small-Signal Distortion Analysis

The distortion analysis portion of Ngspice computes steady-state harmonic and intermodulation
products for small input signal magnitudes. If signals of a single frequency are specified as the
input to the circuit, the complex values of the second and third harmonics are determined at
every point in the circuit. If there are signals of two frequencies input to the circuit, the analysis
finds out the complex values of the circuit variables at the sum and difference of the input
frequencies, and at the difference of the smaller frequency from the second harmonic of the
larger frequency. Distortion analysis is supported for the following nonlinear devices:

• Diodes (DIO),

• BJT,

• JFET (level 1),

• MOSFETs (levels 1, 2, 3, 9, and BSIM1),

• MESFET (level 1).

All linear devices are automatically supported by distortion analysis. If there are switches
present in the circuit, the analysis continues to be accurate provided the switches do not change
state under the small excitations used for distortion calculations.

If a device model does not support direct small signal distortion analysis, please use the Fourier
statement and evaluate the output per scripting.

1.2.6 Sensitivity Analysis

Ngspice will calculate either the DC operating-point sensitivity or the AC small-signal sen-
sitivity of an output variable with respect to all circuit variables, including model parameters.
Ngspice calculates the difference in an output variable (either a node voltage or a branch current)
by perturbing each parameter of each device independently. Since the method is a numerical
approximation, the results may demonstrate second order affects in highly sensitive parameters,
or may fail to show very low but non-zero sensitivity. Further, since each variable is perturb
by a small fraction of its value, zero-valued parameters are not analyzed (this has the benefit of
reducing what is usually a very large amount of data).
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1.2.7 Noise Analysis

The noise analysis portion of Ngspice does analysis device-generated noise for the given cir-
cuit. When provided with an input source and an output port, the analysis calculates the noise
contributions of each device (and each noise generator within the device) to the output port
voltage. It also calculates the input noise to the circuit, equivalent to the output noise referred
to the specified input source. This is done for every frequency point in a specified range - the
calculated value of the noise corresponds to the spectral density of the circuit variable viewed as
a stationary Gaussian stochastic process. After calculating the spectral densities, noise analysis
integrates these values over the specified frequency range to arrive at the total noise voltage/cur-
rent (over this frequency range). This calculated value corresponds to the variance of the circuit
variable viewed as a stationary Gaussian process.

1.2.8 Periodic Steady State Analysis

(Experimental code, not yet made publicly available!)

PSS is a radio frequency periodical large-signal dedicated analysis. The implementation is
based on a time domain shooting like method which make use of Transient analysis. As it is in
early development stage, PSS performs analysis only on autonomous circuits, meaning that it is
only able to predict fundamental frequency and amplitude (and also harmonics) for oscillators,
VCOs, etc.. The algorithm is based on a minimum search of the error vector taken as the
difference of RHS vectors between two occurrences of an estimated period. The convergence
is reached when the mean of error vector decrease below a given threshold that can be set as a
analysis parameter. Results of this analysis are the basis of every periodical large-signal analysis
as PAC or PNoise.

1.3 Analysis at Different Temperatures

Temperature, in ngspice, is a property associated to the entire circuit, rather than an analysis op-
tion. Circuit temperature has a default (nominal) value of 27°C (300.15 K) that can be changed
using the TEMP option in an .option control line (see 15.1.1) or by the .TEMP line (see 2.11),
which has precedence over the .option TEMP line. All analyses are, thus, performed at circuit
temperature, and if you want to simulate circuit behavior at different temperatures you should
prepare a netlist for each temperature.

All input data for ngspice is assumed to have been measured at the circuit nominal tempera-
ture. This value can further be overridden for any device which models temperature effects by
specifying the TNOM parameter on the .model itself. Individual instances may further override
the circuit temperature through the specification of TEMP and DTEMP parameters on the instance.
The two options are not independent even if you can specify both on the instance line, the TEMP
option overrides DTEMP. The algorithm to compute instance temperature is described below:
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Algorithm 1.1 Instance temperature computation
IF TEMP is specified THEN
instance_temperature = TEMP
ELSE IF
instance_temperature = circuit_temperature + DTEMP
END IF

Temperature dependent support is provided for all devices except voltage and current sources
(either independent and controlled) and BSIM models. BSIM MOSFETs have an alternate tem-
perature dependency scheme which adjusts all of the model parameters before input to ngspice.

For details of the BSIM temperature adjustment, see [6] and [7]. Temperature appears explicitly
in the exponential terms of the BJT and diode model equations. In addition, saturation currents
have a built-in temperature dependence. The temperature dependence of the saturation current
in the BJT models is determined by:

IS (T1) = IS (T0)

(
T1

T0

)XT I

exp
(

Egq(T1T0)

k (T1−T0)

)
(1.1)

where k is Boltzmann’s constant, q is the electronic charge, Eg is the energy gap which is a
model parameter, and XT I is the saturation current temperature exponent (also a model param-
eter, and usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

B(T1) = B(T0)

(
T1

T0

)XT B

(1.2)

where T0 and T1 are in degrees Kelvin, and XT B is a user-supplied model parameter. Tempera-
ture effects on beta are carried out by appropriate adjustment to the values of BF , ISE , BR, and
ISC (spice model parameters BF, ISE, BR, and ISC, respectively).

Temperature dependence of the saturation current in the junction diode model is determined by:

IS (T1) = IS (T0)

(
T1

T0

)XT I
N

exp
(

Egq(T1T0)

Nk (T1−T0)

)
(1.3)

where N is the emission coefficient, which is a model parameter, and the other symbols have
the same meaning as above. Note that for Schottky barrier diodes, the value of the saturation
current temperature exponent, XT I, is usually 2. Temperature appears explicitly in the value of
junction potential, U (in Ngspice PHI), for all the device models.

The temperature dependence is determined by:

U (T ) =
kT
q

ln

(
NaNd

Ni (T )
2

)
(1.4)

where k is Boltzmann’s constant, q is the electronic charge, Na is the acceptor impurity den-
sity, Nd is the donor impurity density, Ni is the intrinsic carrier concentration, and Eg is the
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energy gap. Temperature appears explicitly in the value of surface mobility, M0(or U0), for the
MOSFET model.

The temperature dependence is determined by:

M0 (T ) =
M0 (T0)(

T
T0

)1.5 (1.5)

The effects of temperature on resistors, capacitor and inductors is modeled by the formula:

R(T ) = R(T0)
[
1+TC1 (T −T0)+TC2 (T −T0)

2
]

(1.6)

where T is the circuit temperature, T0 is the nominal temperature, and TC1 and TC2 are the first
and second order temperature coefficients.

1.4 Convergence

Ngspice uses the Newton-Raphson algorithm to solve nonlinear equations arising from circuit
description. The NR algorithm is interactive and terminates when both of the following condi-
tions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1% or 1 picoamp (1.0e-
12 Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1% or 1 microvolt (1.0e-6 Volt),
whichever is larger.

1.4.1 Voltage convergence criterion

The algorithm has reached convergence if the difference between the last iteration k and the
current one (k+1): ∣∣∣v(k+1)

n − v(k)n

∣∣∣≤ RELTOL∗ vnmax +VNTOL (1.7)

where

vnmax = max
(∣∣∣v(k+1)

n

∣∣∣ , ∣∣∣v(k)n

∣∣∣) (1.8)

The RELTOL (RELative TOLerance) parameter, which default value is 10−3, specifies how small
the solution update must be, relative to the node voltage, to consider the solution to have con-
verged. The VNTOL (absolute convergence) parameter, which has 1µV as default becomes im-
portant when node voltages have near zero values. The relative parameter alone, in such case,
would need too strict tolerances, perhaps lower than computer round-off error, and thus conver-
gence would never be achieved. VNTOL forces the algorithm to consider as converged any node
whose solution update is lower than its value.
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1.4.2 Current convergence criterion

Ngspice checks the convergence on the non-linear functions that describe the non-linear branches
in circuit elements. In semiconductor devices the functions defines currents through the device
and thus the name of the criterion.

Ngspice computes the difference between the value of the nonlinear function computed for last
voltage and the linear approximation of the same current computed with the actual voltage:∣∣∣∣î(k+1)

branch− i(k)branch

∣∣∣∣≤ RELTOL∗ ibrmax +ABSTOL (1.9)

where

ibrmax = max
(

î(k+1)
branch, i

(k)
branch

)
(1.10)

In the two expressions above, the îbranch indicates the linear approximation of the current.

1.4.3 Convergence failure

Although the algorithm used in ngspice has been found to be very reliable, in some cases it fails
to converge to a solution. When this failure occurs, the program terminates the job. Failure
to converge in dc analysis is usually due to an error in specifying circuit connections, element
values, or model parameter values. Regenerative switching circuits or circuits with positive
feedback probably will not converge in the dc analysis unless the OFF option is used for some
of the devices in the feedback path, .nodeset control line is used to force the circuit to converge
to the desired state.
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Chapter 2

Circuit Description

2.1 General Structure and Conventions

2.1.1 Input file structure

The circuit to be analyzed is described to ngspice by a set of element instance lines, which
define the circuit topology and element instance values, and a set of control lines, which define
the model parameters and the run controls. All lines are assembled in an input file to be read by
ngspice. Two lines are essential:

• The first line in the input file must be the title, which is the only comment line that does
not need any special character in the first place.

• The last line must be .end.

The order of the remaining lines is arbitrary (except, of course, that continuation lines must
immediately follow the line being continued). This feature in the ngspice input language dates
back to the punched card times where elements were written on separate cards (and cards fre-
quently fell off). Leading white spaces in a line are ignored, as well as empty lines.

The lines decribed in sections 2.1 to 2.12 are typically used in the core of the input file, outside
of a .control section (see 16.4.3). An exception is the .include includefile line (2.6) which
may be placed anywhere in the input file. The contents of includefilewill be inserted exactly
in place of the .include line.

2.1.2 Circuit elements (device instances)

Each element in the circuit is a device instance specified by an instance line that contains:

• the element instance name,

• the circuit nodes to which the element is connected,

• and the values of the parameters that determine the electrical characteristics of the ele-
ment.

45
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The first letter of the element instance name specifies the element type. The format for the
ngspice element types is given in the following manual chapters. In the rest of the manual, the
strings XXXXXXX, YYYYYYY, and ZZZZZZZ denote arbitrary alphanumeric strings.

For example, a resistor instance name must begin with the letter R and can contain one or more
characters. Hence, R, R1, RSE, ROUT, and R3AC2ZY are valid resistor names. Details of each
type of device are supplied in a following section 3. Table 2.1 lists the element types which are
available in ngspice, sorted by the first letter.

First letter Element description Comments, links

A XSPICE code model

12
analog (12.2)
digital (12.4)

mixed signal (12.3)
B Behavioral (arbitrary) source 5.1
C Capacitor 3.2.5
D Diode 7

E Voltage-controlled voltage source (VCVS)
linear (4.2.2),

non-linear (5.2)
F Current-controlled current source (CCCs) linear (4.2.3)

G Voltage-controlled current source (VCCS)
linear (4.2.1),

non-linear (5.3)
H Current-controlled voltage source (CCVS) linear (4.2.4)
I Current source 4.1
J Junction field effect transistor (JFET) 9
K Coupled (Mutual) Inductors 3.2.11
L Inductor 3.2.9

M Metal oxide field effect transistor (MOSFET)
11

BSIM3 (11.2.9)
BSIM4 (11.2.10)

N Numerical device for GSS 14.2
O Lossy transmission line 6.2
P Coupled multiconductor line (CPL) 6.4.2
Q Bipolar junction transistor (BJT) 8
R Resistor 3.2.1
S Switch (voltage-controlled) 3.2.14
T Lossless transmission line 6.1
U Uniformly distributed RC line 6.3
V Voltage source 4.1
W Switch (current-controlled) 3.2.14
X Subcircuit 2.4.3
Y Single lossy transmission line (TXL) 6.4.1
Z Metal semiconductor field effect transistor (MESFET) 10

Table 2.1: ngspice element types
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2.1.3 Some naming conventions

Fields on a line are separated by one or more blanks, a comma, an equal (=) sign, or a left or
right parenthesis; extra spaces are ignored. A line may be continued by entering a “+” (plus) in
column 1 of the following line; ngspice continues reading beginning with column 2. A name
field must begin with a letter (A through Z) and cannot contain any delimiters. A number field
may be an integer field (12, -44), a floating point field (3.14159), either an integer or floating
point number followed by an integer exponent (1e-14, 2.65e3), or either an integer or a floating
point number followed by one of the following scale factors:

Suffix Name Factor
T Tera 1012

G Giga 109

Meg Mega 106

K Kilo 103

mil Mil 25.4×10−6

m milli 10−3

u micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

Table 2.2: Ngspice scale factors

Letters immediately following a number that are not scale factors are ignored, and letters im-
mediately following a scale factor are ignored. Hence, 10, 10V, 10Volts, and 10Hz all represent
the same number, and M, MA, MSec, and MMhos all represent the same scale factor. Note that
1000, 1000.0, 1000Hz, 1e3, 1.0e3, 1kHz, and 1k all represent the same number. Note that M or
m denote ’milli’, i.e. 10−3. Suffix meg has to be used for 106.

Nodes names may be arbitrary character strings and are case insensitive, if ngspice is used in
batch mode (16.4.1). If in interactive (16.4.2) or control (16.4.3) mode, node names may either
be plain numbers or arbitrary character strings, not starting with a number. The ground node
must be named “0” (zero). For compatibility reason “gnd” is accepted as ground node, and
will internally be treated as a global node and be converted to “0”. Each circuit has to have a
ground node (gnd or 0)! Note the difference in ngspice where the nodes are treated as character
strings and not evaluated as numbers, thus “0” and “00” are distinct nodes in ngspice but not in
SPICE2.

Ngspice requires that the following topological constraints are satisfied:

• The circuit cannot contain a loop of voltage sources and/or inductors and cannot contain
a cut-set of current sources and/or capacitors.

• Each node in the circuit must have a dc path to ground.

• Every node must have at least two connections except for transmission line nodes (to
permit unterminated transmission lines) and MOSFET substrate nodes (which have two
internal connections anyway).
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2.2 Basic lines

2.2.1 .TITLE line

Examples:

POWER AMPLIFIER CIRCUIT
* a d d i t i o n a l l i n e s f o l l o w i n g
* . . .

T e s t o f CAM c e l l
* a d d i t i o n a l l i n e s f o l l o w i n g
* . . .

The title line must be the first in the input file. Its contents are printed verbatim as the heading
for each section of output.

As an alternative you may place a .TITLE <any title> line anywhere in your input deck.
The first line of your input deck will be overridden by the contents of this line following the
.TITLE statement.

.TITLE line example:

******************************
* a d d i t i o n a l l i n e s f o l l o w i n g
* . . .
. TITLE T e s t o f CAM c e l l
* a d d i t i o n a l l i n e s f o l l o w i n g
* . . .

will internally be replaced by

Internal input deck:

T e s t o f CAM c e l l
* a d d i t i o n a l l i n e s f o l l o w i n g
* . . .
*TITLE T e s t o f CAM c e l l
* a d d i t i o n a l l i n e s f o l l o w i n g
* . . .

2.2.2 .END Line

Examples:

. end

The ".End" line must always be the last in the input file. Note that the period is an integral part
of the name.
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2.2.3 Comments

General Form:

* <any comment>

Examples:

* RF=1K Gain s h o u l d be 100
* Check open−l oop g a i n and phase margin

The asterisk in the first column indicates that this line is a comment line. Comment lines may
be placed anywhere in the circuit description.

2.2.4 End-of-line comments

General Form:

<any command> ; < any comment>
<any command> $ <any comment>

Examples:

RF2=1K ; Gain s h o u l d be 100
C1=10p $ Check open−l oop g a i n and phase margin
. param n1=1 / / new v a l u e

ngspice supports comments that begin with single characters ’;’ or double characters ’$ ’ (dollar
plus space) or ’//’. For readability you should precede each comment character with a space.
ngspice will accept the single character ’$’, but only outside of a .control section.

2.3 .MODEL Device Models

General form:

. model mname t y p e ( pname1= p v a l 1 pname2= p v a l 2 . . . )

Examples:

. model MOD1 npn ( b f =50 i s =1e−13 vbf =50)

Most simple circuit elements typically require only a few parameter values. However, some de-
vices (semiconductor devices in particular) that are included in ngspice require many parameter
values. Often, many devices in a circuit are defined by the same set of device model parameters.
For these reasons, a set of device model parameters is defined on a separate .model line and
assigned a unique model name. The device element lines in ngspice then refer to the model
name.

For these more complex device types, each device element line contains the device name, the
nodes to which the device is connected, and the device model name. In addition, other optional
parameters may be specified for some devices: geometric factors and an initial condition (see
the following section on Transistors (8 to 11) and Diodes (7) for more details). mname in the
above is the model name, and type is one of the following fifteen types:
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Code Model Type
R Semiconductor resistor model
C Semiconductor capacitor model
L Inductor model

SW Voltage controlled switch
CSW Current controlled switch
URC Uniform distributed RC model
LTRA Lossy transmission line model

D Diode model
NPN NPN BJT model
PNP PNP BJT model
NJF N-channel JFET model
PJF P-channel JFET model

NMOS N-channel MOSFET model
PMOS P-channel MOSFET model
NMF N-channel MESFET model
PMF P-channel MESFET model

Table 2.3: Ngspice model types

Parameter values are defined by appending the parameter name followed by an equal sign and
the parameter value. Model parameters that are not given a value are assigned the default values
given below for each model type. Models are listed in the section on each device along with
the description of device element lines. Model parameters and their default values are given in
chapter 31.

2.4 .SUBCKT Subcircuits

A subcircuit that consists of ngspice elements can be defined and referenced in a fashion similar
to device models. Subcircuits are the way ngspice implements hierarchical modeling, but this is
not entirely true because each subcircuit instance is flattened during parsing, and thus ngspice
is not a hierarchical simulator.

The subcircuit is defined in the input deck by a grouping of element cards delimited by the
.subckt and the .ends cards (or the keywords defined by the substart and subend options
(see 17.7)); the program then automatically inserts the defined group of elements wherever the
subcircuit is referenced. Instances of subcircuits within a larger circuit are defined through the
use of an instance card which begins with the letter “X”. A complete example of all three of
these cards follows:
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Example:

* The following is the instance card:
*
xdiv1 10 7 0 vdivide

* The following are the subcircuit definition cards:
*
.subckt vdivide 1 2 3
r1 1 2 10K
r2 2 3 5K
.ends

The above specifies a subcircuit with ports numbered “1”, “2” and “3”:

• Resistor ”R1” is connected from port “1” to port “2”, and has value 10 kOhms.

• Resistor “R2” is connected from port “2” to port “3”, and has value 5 kOhms.

The instance card, when placed in an ngspice deck, will cause subcircuit port “1” to be equated
to circuit node “10”, while port “2” will be equated to node “7” and port “3” will equated to
node “0”.

There is no limit on the size or complexity of subcircuits, and subcircuits may contain other
subcircuits. An example of subcircuit usage is given in chapter 21.6.

2.4.1 .SUBCKT Line

General form:

. SUBCKT subnam N1 <N2 N3 . . . >

Examples:

. SUBCKT OPAMP 1 2 3 4

A circuit definition is begun with a .SUBCKT line. SUBNAM is the subcircuit name, and N1, N2,
... are the external nodes, which cannot be zero. The group of element lines which immediately
follow the .SUBCKT line define the subcircuit. The last line in a subcircuit definition is the
.ENDS line (see below). Control lines may not appear within a subcircuit definition; however,
subcircuit definitions may contain anything else, including other subcircuit definitions, device
models, and subcircuit calls (see below). Note that any device models or subcircuit definitions
included as part of a subcircuit definition are strictly local (i.e., such models and definitions
are not known outside the subcircuit definition). Also, any element nodes not included on the
.SUBCKT line are strictly local, with the exception of 0 (ground) which is always global. If you
use parameters, the .SUBCKT line will be extended (see 2.8.3).



52 CHAPTER 2. CIRCUIT DESCRIPTION

2.4.2 .ENDS Line

General form:

. ENDS <SUBNAM>

Examples:

. ENDS OPAMP

The .ENDS line must be the last one for any subcircuit definition. The subcircuit name, if
included, indicates which subcircuit definition is being terminated; if omitted, all subcircuits
being defined are terminated. The name is needed only when nested subcircuit definitions are
being made.

2.4.3 Subcircuit Calls

General form:

XYYYYYYY N1 <N2 N3 . . . > SUBNAM

Examples:

X1 2 4 17 3 1 MULTI

Subcircuits are used in ngspice by specifying pseudo-elements beginning with the letter X,
followed by the circuit nodes to be used in expanding the subcircuit. If you use parameters, the
subcircuit call will be modified (see 2.8.3).

2.5 .GLOBAL

General form:

.GLOBAL nodename

Examples:

.GLOBAL gnd vcc

Nodes defined in the .GLOBAL statement are available to all circuit and subcircuit blocks inde-
pendently from any circuit hierarchy. After parsing the circuit, these nodes are accessible from
top level.

2.6 .INCLUDE

General form:

. INCLUDE f i l e n a m e

Examples:

. INCLUDE / u s e r s / s p i c e / common / bsim3−param . mod
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Frequently, portions of circuit descriptions will be reused in several input files, particularly with
common models and subcircuits. In any ngspice input file, the .INCLUDE line may be used to
copy some other file as if that second file appeared in place of the .INCLUDE line in the original
file.

There is no restriction on the file name imposed by ngspice beyond those imposed by the local
operating system.

2.7 .LIB

General form:

. LIB f i l e n a m e l ibname

Examples:

. LIB / u s e r s / s p i c e / common / m o s f e t s . l i b mos1

The .LIB statement allows to include library descriptions into the input file. Inside the *.lib
file a library libname will be selected. The statements of each library inside the *.lib file are
enclosed in .LIB libname <...> .ENDL statements.

If the compatibility mode (16.13) is set to ’ps’ by set ngbehavior=ps (17.7) in spinit (16.5)
or .spiceinit (16.6), then a simplified syntax .LIB filename is available: a warning is issued
and filename is simply included as described in chapt. 2.6.

2.8 .PARAM Parametric netlists

Ngspice allows for the definition of parametric attributes in the netlists. This is an enhancement
of the ngspice front-end which adds arithmetic functionality to the circuit description language.

2.8.1 .param line

General form:

. param < i d e n t > = <expr > < i d e n t > = <expr > . . . .

Examples:

. param pippo =5

. param po=6 pp =7 .8 pap ={AGAUSS( pippo , 1 , 1 . 6 7 ) }

. param pippp ={ p ippo + pp }

. param p={pp }

. param pop = ’ pp+p ’

This line assigns numerical values to identifiers. More than one assignment per line is possible
using a space as separator. Parameter identifier names must begin with an alphabetic character.
The other characters must be either alphabetic, a number, or ! # $ % [ ] _ as special charac-
ters. The variables time, temper, and hertz (see 5.1.1) are no valid identifier names. Other
restrictions on naming conventions apply as well, see 2.8.6.
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The .param lines inside subcircuits are copied per call, like any other line. All assignments are
executed sequentially through the expanded circuit. Before its first use, a parameter name must
have been assigned a value. Expression defining a parameter have to be put into braces {p+p2},
alternatively into single quotes ’AGAUSS(pippo, 1, 1.67)’.

2.8.2 Brace expressions in circuit elements:

General form:

{ <expr > }

Examples:

These are allowed in .model lines and in device lines. A spice number is a floating point
number with an optional scaling suffix, immediately glued to the numeric tokens (see chapt.
2.8.5). Brace expressions ({..}) cannot be used to parametrize node names or parts of names.
All identifiers used within an <expr> must have known values at the time when the line is
evaluated, else an error is flagged.

2.8.3 Subcircuit parameters

General form:

. s u b c k t < i d e n t n > node node . . . < i d e n t >=< va lue > < i d e n t >=< va lue > . . .

Examples:

. s u b c k t m y f i l t e r i n o u t r v a l =100k c v a l =100nF

<identn> is the name of the subcircuit given by the user. node is an integer number or an
identifier, for one of the external nodes. The first <ident>=<value> introduces an optional
section of the line. Each <ident> is a formal parameter, and each <value> is either a spice
number or a brace expression. Inside the “.subckt” ... “.ends” context, each formal parameter
may be used like any identifier that was defined on a .param control line. The <value> parts
are supposed to be default values of the parameters. However, in the current version of , they
are not used and each invocation of the subcircuit must supply the _exact_ number of actual
parameters.

The syntax of a subcircuit call (invocation) is:

General form:

X<name> node node . . . < i d e n t n > < i d e n t >=< va lue > < i d e n t >=< va lue > . . .

Examples:

X1 i n p u t o u t p u t m y f i l t e r r v a l =1k c v a l =1n

Here <name> is the symbolic name given to that instance of the subcircuit, <identn> is the
name of a subcircuit defined beforehand. node node ... is the list of actual nodes where the
subcircuit is connected. <value> is either a spice number or a brace expression { <expr> } .
The sequence of <value> items on the X line must exactly match the number and the order of
formal parameters of the subcircuit.
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Subcircuit example with parameters:

* Param−example
. param a m p l i t u d e = 1V
*
. s u b c k t m y f i l t e r i n o u t r v a l =100k c v a l =100nF
Ra i n p1 {2* r v a l }
Rb p1 o u t {2* r v a l }
C1 p1 0 {2* c v a l }
Ca i n p2 { c v a l }
Cb p2 o u t { c v a l }
R1 p2 0 { r v a l }
. ends m y f i l t e r
*
X1 i n p u t o u t p u t m y f i l t e r r v a l =1k c v a l =1n
V1 i n p u t 0 AC { a m p l i t u d e }
. end

2.8.4 Symbol scope

All subcircuit and model names are considered global and must be unique. The .param symbols
that are defined outside of any “.subckt” ... “.ends” section are global. Inside such a section,
the pertaining “params:” symbols and any .param assignments are considered local: they
mask any global identical names, until the .ends line is encountered. You cannot reassign to a
global number inside a .subckt, a local copy is created instead. Scope nesting works up to a
level of 10. For example, if the main circuit calls A which has a formal parameter xx, A calls
B which has a param. xx, and B calls C which also has a formal param. xx, there will be three
versions of ’xx’ in the symbol table but only the most local one - belonging to C - is visible.

A word of caution: Ngspice allows to define circuits with nested subcircuits. Currently it is
not possible however to issue .param statements inside of a .subckt ... .ends section, when there
are additional, nested .subckt ... .ends in the same section. This is a bug, which will be removed
asap.

2.8.5 Syntax of expressions

<expr> ( optional parts within [ ...] ):

An expression may be one of:

<atom > where <atom > i s e i t h e r a s p i c e number o r an i d e n t i f i e r
<unary−o p e r a t o r > <atom >
< f u n c t i o n−name> ( <expr > [ , <expr > . . . ] )
<atom > < b i n a r y−o p e r a t o r > <expr >
( <expr > )

As expected, atoms, built-in function calls and stuff within parentheses are evaluated before
the other operators. The operators are evaluated following a list of precedence close to the one
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of the C language. For equal precedence binary ops, evaluation goes left to right. Functions
operate on real values only!

Operator Alias Precedence Description
- 1 unary -
! 1 unary not

** ^ 2 power, like pwr
* 3 multiply
/ 3 divide

% 3 modulo
\ 3 integer divide
+ 4 add
- 4 subtract

== 5 equality
!= <> 5 non-equal
<= 5 less or equal
>= 5 greater or equal
< 5 less than
> 5 greater than

&& 6 boolean and
|| 7 boolean or

c?x:y 8 ternary operator

The number zero is used to represent boolean False. Any other number represents boolean True.
The result of logical operators is 1 or 0. An example input file is shown below:

Example input file with logical operators:

* L o g i c a l o p e r a t o r s

v1or 1 0 {1 | | 0}
v1and 2 0 {1 && 0}
v1no t 3 0 { ! 1}
v1mod 4 0 {5 % 3}
v1d iv 5 0 {5 \ 3}
v0no t 6 0 { ! 0}

. c o n t r o l
op
p r i n t a l l v
. endc

. end
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Built-in function Notes
sqr(x) y = x * x
sqrt(x) y = sqrt(x)

sin(x), cos(x), tan(x)
sinh(x), cosh(x), tanh(x)
asin(x), acos(x), atan(x)

asinh(x), acosh(x), atanh(x)
arctan(x) atan(x), kept for compatibility

exp(x)
ln(x), log(x)

abs(x)
nint(x) Nearest integer, half integers towards even
int(x) Nearest integer rounded towards 0

floor(x) Nearest integer rounded towards -∞
ceil(x) Nearest integer rounded towards +∞

pow(x,y) x raised to the power of y (pow from C runtime library)
pwr(x,y) pow(fabs(x), y)
min(x, y)
max(x, y)

sgn(x) 1.0 for x > 0, 0.0 for x == 0, -1.0 for x < 0
ternary_fcn(x, y, z) x ? y : z

gauss(nom, rvar, sigma) nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation rvar

(relative to nominal), divided by sigma
agauss(nom, avar, sigma) nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation avar
(absolute), divided by sigma

unif(nom, rvar) nominal value plus relative variation (to nominal)
uniformly distributed between +/-rvar

aunif(nom, avar) nominal value plus absolute variation uniformly distributed
between +/-avar

limit(nom, avar) nominal value +/-avar, depending on random number in
[-1, 1[ being > 0 or < 0

The scaling suffixes (any decorative alphanumeric string may follow):

suffix value
g 1e9

meg 1e6
k 1e3
m 1e-3
u 1e-6
n 1e-9
p 1e-12
f 1e-15

Note: there are intentional redundancies in expression syntax, e.g. x^y , x**y and pwr(x,y) all
have nearly the same result.
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2.8.6 Reserved words

In addition to the above function names and to the verbose operators ( not and or div mod ),
other words are reserved and cannot be used as parameter names: and, or, not, div, mod, defined,
sqr, sqrt, sin, cos, exp, ln, arctan, abs, pwr, time, temper, hertz.

2.8.7 Alternative syntax

The & sign is tolerated to provide some “historical” parameter notation: & as the first character
of a line is equivalent to: .param.

Inside a line, the notation &(....) is equivalent to {....}, and &identifier means the same
thing as {identifier} .

Comments in the style of C++ line trailers (//) are detected and erased.

Warning: this is NOT possible in embedded .control parts of a source file, these lines are outside
of this scope.

Now, there is some possible confusion in ngspice because of multiple numerical expression
features. The .param lines and the braces expressions (see next chapter 2.9) are evaluated in
the front-end, that is, just after the subcircuit expansion. (Technically, the X lines are kept as
comments in the expanded circuit so that the actual parameters can correctly be substituted).
So, after the netlist expansion and before the internal data setup, all number attributes in the
circuit are known constants. However, there are some circuit elements in Spice which accept
arithmetic expressions that are NOT evaluated at this point, but only later during circuit analysis.
These are the arbitrary current and voltage sources (B-sources, 5), as well as E- and G-sources
and R-, L-, or C-devices. The syntactic difference is that "compile-time" expressions are within
braces, but "run-time" expressions have no braces. To make things more complicated, the back-
end ngspice scripting language also accepts arithmetic/logic expressions that operate on its own
scalar or vector data sets (17.2). Please see also chapt. 2.13.

It would be desirable to have the same expression syntax, operator and function set, and prece-
dence rules, for the three contexts mentioned above. In the current Numparam implementation,
that goal is not yet achieved...

2.9 .FUNC

With this line a function may be defined. The syntax of its expression is equivalent to the
expression syntax from the .param line (2.8.5).

General form:

. func < i d e n t > { <expr > }

Examples:

. f unc i c o s ( x ) { cos ( x ) − 1}

. func f ( x , y ) {x*y}

.func will initiate a replacement operation. After reading the input files, and before parameters
are evaluated, all occurrences of the icos(x) function will be replaced by cos(x)-1. All
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occurrences of f(x,y) will be replaced by x*y. Function statements may be nested to a depth
of t.b.d..

2.10 .CSPARAM

Create a constant vector (see 17.8.2) from a parameter in plot (17.3) “const”.

General form:

. csparam < i d e n t > = <expr >

Examples:

. param pippo =5

. param pp=6

. csparam pippp ={ p ippo + pp }

. param p={pp }

. csparam pap = ’ pp+p ’

In the example shown, vectors pippp, and pap are added to the constants, which already reside
in plot “const”, with length one and real values. These vectors are generated during circuit
parsing and thus cannot be changed later (same as with ordinary parameters). They may be
used in ngspice scripts and .control sections (see chapt. 17).

The use of .csparam is still experimental and has to be tested. A simple usage is shown below.

* test csparam
.param TEMPS = 27
.csparam newt = {3*TEMPS}
.csparam mytemp = ’2 + TEMPS’
.control
echo $&newt $&mytemp
.endc
.end

2.11 .TEMP

Sets the circuit temperature in degrees Celsius.

General form:

. temp v a l u e

Examples:

. temp 27

This card overrides the circuit temperature given in an .option line (15.1.1).
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2.12 .IF Condition-Controlled Netlist

A simple IF-ELSE block allows condition-controlling of the netlist. boolean expression is
any expression according to chapt. 2.8.5 which evaluates parameters and returns a boolean 1
or 0. The netlist block in between the .if ... .endif statements may contain device instances or
.model cards which are selected according to the logic condition.

General form:

. i f ( b o o l e a n e x p r e s s i o n )
. . .
. e l s e i f ( b o o l e a n e x p r e s s i o n )
. . .
. e n d i f

Example 1:

* d e v i c e i n s t a n c e i n IF−ELSE b l o c k
. param ok=0 ok2=1

v1 1 0 1
R1 1 0 2

. i f ( ok && ok2 )
R11 1 0 2
. e l s e
R11 1 0 0 . 5 ; <−− s e l e c t e d
. e n d i f

Example 2:

* . model i n IF−ELSE b l o c k
. param m0=0 m1=1

M1 1 2 3 4 N1 W=1 L=0.5

. i f (m0==1)

. model N1 NMOS l e v e l =49 V e r s i o n =3 .1

. e l s e i f (m1==1)

. model N1 NMOS l e v e l =49 V e r s i o n = 3 . 2 . 4 ; <−− s e l e c t e d

. e l s e

. model N1 NMOS l e v e l =49 V e r s i o n = 3 . 3 . 0

. e n d i f

For now this is a very restricted version of an IF-ELSE block, so several netlist components are
currently not supported within the IF-ELSE block: .SUBCKT, .INC, .LIB, .PARAM. Nesting
of IF-ELSE blocks is not possible. Only one .elseif is allowed per block.
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2.13 Parameters, functions, expressions, and command scripts

In ngspice there are several ways to describe functional dependencies. In fact there are three
independent function parsers, being active before, during, and after the simulation. So it might
be due to have a few words on their interdependence.

2.13.1 Parameters

Parameters (chapt. 2.8.1) and functions, either defined within the .param statement or with
the .func statement (chapt. 2.9) are evaluated before any simulation is started, that is during
the setup of the input and the circuit. Therefore these statements may not contain any simu-
lation output (voltage or current vectors), because it is simply not yet available. The syntax is
described in chapt. 2.8.5. During the circuit setup all functions are evaluated, all parameters are
replaced by their resulting numerical values. Thus it will not be possible to get feedback from
a later stage (during or after simulation) to change any of the parameters.

2.13.2 Nonlinear sources

During the simulation, the B source (chapt. 5) and their associated E and G sources, as well
as some devices (R, C, L) may contain expressions. These expressions may contain parameters
from above (evaluated immediately upon ngspice start up), numerical data, predefined func-
tions, but also node voltages and branch currents which are resulting from the simulation. The
source or device values are continuously updated during the simulation. Therefore the sources
are powerful tools to define non-linear behavior, you may even create new ’devices’ by yourself.
Unfortunately the expression syntax (see chapt. 5.1) and the predefined functions may deviate
from the ones for parameters listed in 2.8.1.

2.13.3 Control commands, Command scripts

Commands, as described in detail in chapt. 17.5, may be used interactively, but also as a com-
mand script enclosed in .control ... .endc lines. The scripts may contain expressions
(see chapt. 17.2). The expressions may work upon simulation output vectors (of node volt-
ages, branch currents), as well as upon predefined or user defined vectors and variables, and are
invoked after the simulation. Parameters from 2.8.1 defined by the .param statement are not
allowed in these expressions. However you may define such parameters with .csparam (2.10).
Again the expression syntax (see chapt. 17.2) will deviate from the one for parameters or B
sources listed in 2.8.1 and 5.1.

If you want to use parameters from 2.8.1 inside your control script, you may use .csparam
(2.10) or apply a trick by defining a voltage source with the parameter as its value, and then
have it available as a vector (e.g. after a transient simulation) with a then constant output (the
parameter). A feedback from here back into parameters (2.13.1) is never possible. Also you
cannot access non-linear sources of the preceding simulation. However you may start a first
simulation inside your control script, then evaluate its output using expressions, change some
of the element or model parameters with the alter and altermod statements (see chapt. 17.5.3)
and then automatically start a new simulation.
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Expressions and scripting are powerful tools within ngspice, and we will enhance the examples
given in chapt. 21 continuously to describe these features.



Chapter 3

Circuit Elements and Models

Data fields that are enclosed in less-than and greater-than signs (’< >’) are optional. All indi-
cated punctuation (parentheses, equal signs, etc.) is optional but indicate the presence of any
delimiter. Further, future implementations may require the punctuation as stated. A consis-
tent style adhering to the punctuation shown here makes the input easier to understand. With
respect to branch voltages and currents, ngspice uniformly uses the associated reference con-
vention (current flows in the direction of voltage drop).

3.1 General options and information

3.1.1 Simulating more devices in parallel

If you need to simulate more devices of the same kind in parallel, you can use the “m” (often
called parallel multiplier) option which is available for all instances except transmission lines
and sources (both independent and controlled). The parallel multiplier is implemented by mul-
tiplying the value of m the element’s matrix stamp, thus it cannot be used to accurately simulate
larger devices in integrated circuits. The netlist below show how to correctly use the parallel
multiplier:

Multiple device example:

d1 2 0 mydiode m=10
d01 1 0 mydiode
d02 1 0 mydiode
d03 1 0 mydiode
d04 1 0 mydiode
d05 1 0 mydiode
d06 1 0 mydiode
d07 1 0 mydiode
d08 1 0 mydiode
d09 1 0 mydiode
d10 1 0 mydiode
. . .

The d1 instance connected between nodes 2 and 0 is equivalent to the parallel d01-d10 con-
nected between 1 and 0.

63
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3.1.2 Technology scaling

Still to be implemented and written.

3.1.3 Model binning

Binning is a kind of range partitioning for geometry dependent models like MOSFET’s. The
purpose is to cover larger geometry ranges (Width and Length) with higher accuracy then the
model built-in geometry formulas. Each size range described by the additional model parame-
ters LMIN, LMAX, WMIN and WMAX has its own model parameter set. These model cards
are defined by a number extension, like “nch.1”. NGSPICE has a algorithm to choose the right
model card by the requested W and L.

This is implemented for BSIM3 (11.2.9) and BSIM4 (11.2.10) models.

3.1.4 Multiplier m, initial conditions

The area factor “m” (often called parallel multiplier) used on the diode, BJT, JFET, and MES-
FET devices determines the number of equivalent parallel devices of a specified model. The
affected parameters are marked with an asterisk under the heading “area” in the model descrip-
tions (see the various chapters on models below). Several geometric factors associated with the
channel and the drain and source diffusions can be specified on the MOSFET device line.

Two different forms of initial conditions may be specified for some devices. The first form
is included to improve the dc convergence for circuits that contain more than one stable state.
If a device is specified OFF, the dc operating point is determined with the terminal voltages
for that device set to zero. After convergence is obtained, the program continues to iterate to
obtain the exact value for the terminal voltages. If a circuit has more than one dc stable state,
the OFF option can be used to force the solution to correspond to a desired state. If a device
is specified OFF when in reality the device is conducting, the program still obtains the correct
solution (assuming the solutions converge) but more iterations are required since the program
must independently converge to two separate solutions.

The .NODESET control line (see chapt. 15.2.1) serves a similar purpose as the OFF option. The
.NODESET option is easier to apply and is the preferred means to aid convergence. The second
form of initial conditions are specified for use with the transient analysis. These are true “initial
conditions” as opposed to the convergence aids above. See the description of the .IC control
line (chapt. 15.2.2) and the .TRAN control line (chapt. 15.3.9) for a detailed explanation of
initial conditions.
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3.2 Elementary Devices

3.2.1 Resistors

General form:

RXXXXXXX n+ n− v a l u e <ac= va l > <m= val > < s c a l e = va l > <temp= va l >
+ <dtemp= va l > < t c 1 = va l > < t c 2 = va l > < n o i s y =0|1 >

Examples:

R1 1 2 100
RC1 12 17 1K
R2 5 7 1K ac =2K
RL 1 4 2K m=2

Ngspice has a fairly complex model for resistors. It can simulate both discrete and semicon-
ductor resistors. Semiconductor resistors in ngspice means: resistors described by geometrical
parameters. So, do not expect detailed modeling of semiconductor effects.

n+ and n- are the two element nodes, value is the resistance (in ohms) and may be positive or
negative1 but not zero.

Simulating small valued resistors: If you need to simulate very small resis-
tors (0.001 Ohm or less), you should use CCVS (transresistance), it is less
efficient but improves overall numerical accuracy. Think about that a small
resistance is a large conductance.
Ngspice can assign a resistor instance a different value for AC analysis, specified using the ac
keyword. This value must not be zero as described above. The AC resistance is used in AC
analysis only (not Pole-Zero nor noise). If you do not specify the ac parameter, it is defaulted
to value. If you want to simulate temperature dependence of a resistor, you need to specify its
temperature coefficients, using a .model line, like in the example below:

Example:

RE1 1 2 800 newres dtemp =5

.MODEL newres R t c 1 =0.001

The temperature coefficients tc1 and tc2 describe a quadratic temperature dependence (see
equation17.12) of the resistance. If given in the instance line (the R... line) their values will
override the tc1 and tc2 of the .model line (3.2.3). Instance temperature is useful even if
resistance does not vary with it, since the thermal noise generated by a resistor depends on its
absolute temperature. Resistors in ngspice generates two different noises: thermal and flicker.
While thermal noise is always generated in the resistor, to add a flicker noise2 source you have
to add a .model card defining the flicker noise parameters. It is possible to simulate resistors
that do not generate any kind of noise using the noisy keyword and assigning zero to it, as in
the following example:

Example:

Rmd 134 57 1 . 5 k n o i s y =0

1A negative resistor modeling an active element can cause convergence problems, please avoid it.
2Flicker noise can be used to model carbon resistors.
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Ngspice calculates the nominal resistance as described below:

Rnom = VALUE∗scale
m

Racnom = ac∗scale
m

(3.1)

If you are interested in temperature effects or noise equations, read the next section on semi-
conductor resistors.

3.2.2 Semiconductor Resistors

General form:

RXXXXXXX n+ n− < va lue > <mname> < l = l e n g t h > <w=width > <temp= va l >
+ <dtemp= va l > <m= val > <ac= va l > < s c a l e = va l > < n o i s y = 0 |1 >

Examples:

RLOAD 2 10 10K
RMOD 3 7 RMODEL L=10u W=1u

This is the more general form of the resistor presented before (3.2.1) and allows the modeling of
temperature effects and for the calculation of the actual resistance value from strictly geometric
information and the specifications of the process. If value is specified, it overrides the geo-
metric information and defines the resistance. If mname is specified, then the resistance may be
calculated from the process information in the model mname and the given length and width.
If value is not specified, then mname and length must be specified. If width is not specified,
then it is taken from the default width given in the model.

The (optional) temp value is the temperature at which this device is to operate, and overrides
the temperature specification on the .option control line and the value specified in dtemp.

3.2.3 Semiconductor Resistor Model (R)

The resistor model consists of process-related device data that allow the resistance to be calcu-
lated from geometric information and to be corrected for temperature. The parameters available
are:

Name Parameter Units Default Example
TC1 first order temperature coeff. Ω/◦C 0.0 -
TC2 second order temperature coeff. Ω/◦C2 0.0 -
RSH sheet resistance Ω/� - 50

DEFW default width m 1e-6 2e-6
NARROW narrowing due to side etching m 0.0 1e-7

SHORT shortening due to side etching m 0.0 1e-7
TNOM parameter measurement temperature ◦C 27 50

KF flicker noise coefficient 0.0 1e-25
AF flicker noise exponent 0.0 1.0

R (RES) default value if element value not given W - 1000

The sheet resistance is used with the narrowing parameter and l and w from the resistor device
to determine the nominal resistance by the formula:
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Rnom = rsh
l−SHORT

w−NARROW
(3.2)

DEFW is used to supply a default value for w if one is not specified for the device. If either rsh
or l is not specified, then the standard default resistance value of 1 mOhm is used. TNOM is used
to override the circuit-wide value given on the .options control line where the parameters
of this model have been measured at a different temperature. After the nominal resistance is
calculated, it is adjusted for temperature by the formula:

R(T ) = R(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(3.3)

where R(TNOM) = Rnom|Racnom. In the above formula, “T ” represents the instance tempera-
ture, which can be explicitly set using the temp keyword or calculated using the circuit tem-
perature and dtemp, if present. If both temp and dtemp are specified, the latter is ignored.
Ngspice improves spice’s resistors noise model, adding flicker noise (1/f ) to it and the noisy
keyword to simulate noiseless resistors. The thermal noise in resistors is modeled according to
the equation:

ī2R =
4kT

R
∆ f (3.4)

where "k" is the Boltzmann’s constant, and "T " the instance temperature.

Flicker noise model is:

¯i2R f n =
KFIAF

R
f

∆ f (3.5)

A small list of sheet resistances (in Ω/�) for conductors is shown below. The table represents
typical values for MOS processes in the 0.5 - 1 um

range. The table is taken from: N. Weste, K. Eshraghian - Principles of CMOS VLSI Design
2nd Edition, Addison Wesley.

Material Min. Typ. Max.
Inter-metal (metal1 - metal2) 0.005 0.007 0.1

Top-metal (metal3) 0.003 0.004 0.05
Polysilicon (poly) 15 20 30

Silicide 2 3 6
Diffusion (n+, p+) 10 25 100
Silicided diffusion 2 4 10

n-well 1000 2000 5000
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3.2.4 Resistors, dependent on expressions (behavioral resistor)

General form:

RXXXXXXX n+ n− R = ’ e x p r e s s i o n ’ < t c 1 = va lue > < t c 2 = va lue >
RXXXXXXX n+ n− ’ e x p r e s s i o n ’ < t c 1 = va lue > < t c 2 = va lue >

Examples:

R1 r r 0 r = ’V( r r ) < { Vt } ? {R0} : {2*R0} ’ t c 1 =2e−03 t c 2 =3 .3 e−06
R2 r2 r r r = {5k + 50*TEMPER}

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in chapter
5.1. It may contain parameters (2.8.1) and the special variables time, temper, and hertz (5.1.2).
An example file is given below.

Example input file for non-linear resistor:

Non− l i n e a r r e s i s t o r
. param R0=1k Vi=1 Vt =0 .5
* r e s i s t o r depend ing on c o n t r o l v o l t a g e V( r r )
R1 r r 0 r = ’V( r r ) < { Vt } ? {R0} : {2*R0} ’
* c o n t r o l v o l t a g e
V1 r r 0 PWL(0 0 100u { Vi } )
. c o n t r o l
s e t n o a s k q u i t
t r a n 100n 100u u i c
p l o t i ( V1 )
. endc
. end

3.2.5 Capacitors

General form:

CXXXXXXX n+ n− < va lue > <mname> <m= val > < s c a l e = va l > <temp= va l >
+ <dtemp= va l > < t c 1 = va l > < t c 2 = va l > < i c = i n i t _ c o n d i t i o n >

Examples:

CBYP 13 0 1UF
COSC 17 23 10U IC=3V

Ngspice provides a detailed model for capacitors. Capacitors in the netlist can be specified
giving their capacitance or their geometrical and physical characteristics. Following the original
SPICE3 "convention", capacitors specified by their geometrical or physical characteristics are
called "semiconductor capacitors" and are described in the next section.

In this first form n+ and n- are the positive and negative element nodes, respectively and value
is the capacitance in Farads.

Capacitance can be specified in the instance line as in the examples above or in a .model line,
as in the example below:
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C1 15 5 c s t d
C2 2 7 c s t d
. model c s t d C cap =3n

Both capacitors have a capacitance of 3nF.
If you want to simulate temperature dependence of a capacitor, you need to specify its temper-
ature coefficients, using a .model line, like in the example below:

CEB 1 2 1u cap1 dtemp =5
.MODEL cap1 C t c 1 =0.001

The (optional) initial condition is the initial (time zero) value of capacitor voltage (in Volts).
Note that the initial conditions (if any) apply only if the uic option is specified on the .tran
control line.

Ngspice calculates the nominal capacitance as described below:

Cnom = value∗ scale∗m (3.6)

The temperature coefficients tc1 and tc2 describe a quadratic temperature dependence (see
equation17.12) of the capacitance. If given in the instance line (the C... line) their values will
override the tc1 and tc2 of the .model line (3.2.7).

3.2.6 Semiconductor Capacitors

General form:

CXXXXXXX n+ n− < va lue > <mname> < l = l e n g t h > <w=width > <m= val >
+ < s c a l e = va l > <temp= va l > <dtemp= va l > < i c = i n i t _ c o n d i t i o n >

Examples:

CLOAD 2 10 10P
CMOD 3 7 CMODEL L=10u W=1u

This is the more general form of the Capacitor presented in section (3.2.5), and allows for the
calculation of the actual capacitance value from strictly geometric information and the speci-
fications of the process. If value is specified, it defines the capacitance and both process and
geometrical information are discarded. If value is not specified, the capacitance is calculated
from information contained model mname and the given length and width (l, w keywords, re-
spectively).

It is possible to specify mname only, without geometrical dimensions and set the capacitance in
the .model line (3.2.5).

3.2.7 Semiconductor Capacitor Model (C)

The capacitor model contains process information that may be used to compute the capacitance
from strictly geometric information.
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Name Parameter Units Default Example
CAP model capacitance F 0.0 1e-6
CJ junction bottom capacitance F/m2 - 5e-5

CJSW junction sidewall capacitance F/m - 2e-11
DEFW default device width m 1e-6 2e-6
DEFL default device length m 0.0 1e-6

NARROW narrowing due to side etching m 0.0 1e-7
SHORT shortening due to side etching m 0.0 1e-7

TC1 first order temperature coeff. F/◦C 0.0 0.001
TC2 second order temperature coeff. F/◦C2 0.0 0.0001

TNOM parameter measurement temperature ◦C 27 50
DI relative dielectric constant F/m - 1

THICK insulator thickness m 0.0 1e-9

The capacitor has a capacitance computed as:

If value is specified on the instance line then

Cnom = value∗ scale∗m (3.7)

If model capacitance is specified then

Cnom = CAP∗ scale∗m (3.8)

If neither value nor CAP are specified, then geometrical and physical parameters are take into
account:

C0 = CJ(l−SHORT)(w−NARROW)+2CJSW(l−SHORT+w−NARROW) (3.9)

CJ can be explicitly given on the .model line or calculated by physical parameters. When CJ is
not given, is calculated as:

If THICK is not zero:

CJ = DI∗ε0
THICK if DI is specified,

CJ =
εSiO2

THICK otherwise.
(3.10)

If the relative dielectric constant is not specified the one for SiO2 is used. The values of the
constants are: ε0 = 8.854214871e− 12 F

m and εSiO2 = 3.4531479969e− 11 F
m . The nominal

capacitance is then computed as:

Cnom =C0 ∗ scale∗m (3.11)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

C(T ) =C(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(3.12)
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where C(TNOM) =Cnom.

In the above formula, “T ” represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present.

3.2.8 Capacitors, dependent on expressions (behavioral capacitor)

General form:

CXXXXXXX n+ n− C = ’ e x p r e s s i o n ’ < t c 1 = va lue > < t c 2 = va lue >
CXXXXXXX n+ n− ’ e x p r e s s i o n ’ < t c 1 = va lue > < t c 2 = va lue >

Examples:

C1 cc 0 c = ’V( cc ) < { Vt } ? {C1} : {Ch} ’ t c 1 =−1e−03 t c 2 =1 .3 e−05

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in chapter
5.1. It may contain parameters (2.8.1) and the special variables time, temper, and hertz (5.1.2).

Example input file:

B e h a v i o r a l C a p a c i t o r
. param Cl =5n Ch=1n Vt=1m I l =100n
. i c v ( cc ) = 0 v ( cc2 ) = 0
* c a p a c i t o r depend ing on c o n t r o l v o l t a g e V( cc )
C1 cc 0 c = ’V( cc ) < { Vt } ? { Cl } : {Ch} ’
*C1 cc 0 c ={Ch}
I1 0 1 { I l }
Exxx n1−copy n2 n2 cc2 1
Cxxx n1−copy n2 1
Bxxx cc2 n2 I = ’ (V( cc2 ) < { Vt } ? { Cl } : {Ch } ) ’ * i ( Exxx )
I2 n2 22 { I l }
vn2 n2 0 DC 0
* measure c h a r g e by i n t e g r a t i n g c u r r e n t
a i n t 1 %i d (1 cc ) 2 t i m e _ c o u n t
a i n t 2 %i d (22 cc2 ) 3 t i m e _ c o u n t
. model t i m e _ c o u n t i n t ( i n _ o f f s e t =0 .0 g a i n =1 .0
+ o u t _ l o w e r _ l i m i t =−1e12 o u t _ u p p e r _ l i m i t =1 e12
+ l i m i t _ r a n g e =1e−9 o u t _ i c = 0 . 0 )
. c o n t r o l
s e t n o a s k q u i t
t r a n 100n 100u
p l o t v ( 2 )
p l o t v ( cc ) v ( cc2 )
. endc
. end
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3.2.9 Inductors

General form:

LYYYYYYY n+ n− < va lue > <mname> < n t = va l > <m= val > < s c a l e = va l > <temp= va l >
+ <dtemp= va l > < t c 1 = va l > < t c 2 = va l > <m= val > < i c = i n i t _ c o n d i t i o n >

Examples:

LLINK 42 69 1UH
LSHUNT 23 51 10U IC =15.7MA

The inductor device implemented into ngspice has many enhancements over the original one.n+
and n- are the positive and negative element nodes, respectively. value is the inductance in
Henry. Inductance can be specified in the instance line as in the examples above or in a .model
line, as in the example below:

L1 15 5 indmod1
L2 2 7 indmod1
. model indmod1 L i n d =3n

Both inductors have an inductance of 3nH.

The nt is used in conjunction with a .model line, and is used to specify the number of turns
of the inductor. If you want to simulate temperature dependence of an inductor, you need to
specify its temperature coefficients, using a .model line, like in the example below:

Lload 1 2 1u ind1 dtemp =5
.MODEL ind1 L t c 1 =0.001

The (optional) initial condition is the initial (time zero) value of inductor current (in Amps) that
flows from n+, through the inductor, to n-. Note that the initial conditions (if any) apply only if
the UIC option is specified on the .tran analysis line.

Ngspice calculates the nominal inductance as described below:

Lnom =
value∗ scale

m
(3.13)

3.2.10 Inductor model

The inductor model contains physical and geometrical information that may be used to compute
the inductance of some common topologies like solenoids and toroids, wound in air or other
material with constant magnetic permeability.
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Name Parameter Units Default Example
IND model inductance H 0.0 1e-3

CSECT cross section m2 0.0 1e-3
LENGTH length m 0.0 1e-2

TC1 first order temperature coeff. H/◦C 0.0 0.001
TC2 second order temperature coeff. H/◦C2 0.0 0.0001

TNOM parameter measurement temperature ◦C 27 50
NT number of turns - 0.0 10
MU relative magnetic permeability H/m 0.0 -

The inductor has an inductance computed as:

If value is specified on the instance line then

Lnom =
value∗ scale

m
(3.14)

If model inductance is specified then

Lnom =
IND∗ scale

m
(3.15)

If neither value nor IND are specified, then geometrical and physical parameters are take into
account. In the following formulas

NT refers to both instance and model parameter (instance parameter overrides model parameter):

If LENGTH is not zero:

{
Lnom = MU∗µ0∗NT2∗CSECT

LENGTH if MU is specified,

Lnom = µ0∗NT2∗CSECT
LENGTH otherwise.

(3.16)

with:µ0 = 1.25663706143592e−6H
m . After the nominal inductance is calculated, it is adjusted

for temperature by the formula:

L(T ) = L(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(3.17)

where L(TNOM) = Lnom. In the above formula, “T ” represents the instance temperature, which
can be explicitly using the temp keyword or calculated using the circuit temperature and dtemp,
if present.

3.2.11 Coupled (Mutual) Inductors

General form:

KXXXXXXX LYYYYYYY LZZZZZZZ v a l u e

Examples:

K43 LAA LBB 0 .999
KXFRMR L1 L2 0 . 8 7
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LYYYYYYY and LZZZZZZZ are the names of the two coupled inductors, and value is the
coefficient of coupling, K, which must be greater than 0 and less than or equal to 1. Using the
“dot” convention, place a “dot” on the first node of each inductor.

3.2.12 Inductors, dependent on expressions (behavioral inductor)

General form:

LXXXXXXX n+ n− L = ’ e x p r e s s i o n ’ < t c 1 = va lue > < t c 2 = va lue >
LXXXXXXX n+ n− ’ e x p r e s s i o n ’ < t c 1 = va lue > < t c 2 = va lue >

Examples:

L1 l 2 l l l L = ’ i (Vm) < { I t } ? { Ll } : {Lh } ’ t c 1 =−4e−03 t c 2 =6e−05

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in chapter
5.1. It may contain parameters (2.8.1) and the special variables time, temper, and hertz (5.1.2).
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Example input file:

V a r i a b l e i n d u c t o r
. param Ll =0 .5m Lh=5m I t =50u Vi=2m
. i c v ( i n t 2 1 ) = 0

* v a r i a b l e i n d u c t o r depend ing on c o n t r o l c u r r e n t i (Vm)
L1 l 2 l l l L = ’ i (Vm) < { I t } ? { Ll } : {Lh } ’
* measure c u r r e n t t h r o u g h i n d u c t o r
vm l l l 0 dc 0
* v o l t a g e on i n d u c t o r
V1 l 2 0 { Vi }

* f i x e d i n d u c t o r
L3 33 331 { Ll }
* measure c u r r e n t t h r o u g h i n d u c t o r
vm33 331 0 dc 0
* v o l t a g e on i n d u c t o r
V3 33 0 { Vi }

* non l i n e a r i n d u c t o r ( d i s c r e t e s e t u p )
F21 i n t 2 1 0 B21 −1
L21 i n t 2 1 0 1
B21 n1 n2 V = ’ ( i (Vm21) < { I t } ? { Ll } : {Lh } ) ’ * v ( i n t 2 1 )
* measure c u r r e n t t h r o u g h i n d u c t o r
vm21 n2 0 dc 0
V21 n1 0 { Vi }

. c o n t r o l
s e t n o a s k q u i t
t r a n 1u 100u u i c
p l o t i (Vm) i ( vm33 )
p l o t i ( vm21 ) i ( vm33 )
p l o t i (vm)− i ( vm21 )
. endc
. end

3.2.13 Capacitor or inductor with initial conditions

The simulator supports the specification of voltage and current initial conditions on capacitor
and inductor models, respectively. These models are not the standard ones supplied with
SPICE3, but are in fact code models which can be substituted for the SPICE models when
realistic initial conditions are required. For details please refer to chapt. 12. A XSPICE deck
example using these models is shown below:

*
* This circuit contains a capacitor and an inductor with
* initial conditions on them. Each of the components
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* has a parallel resistor so that an exponential decay
* of the initial condition occurs with a time constant of
* 1 second.
*
a1 1 0 cap
.model cap capacitor (c=1000uf ic=1)
r1 1 0 1k
*
a2 2 0 ind
.model ind inductor (l=1H ic=1)
r2 2 0 1.0
*
.control
tran 0.01 3
plot v(1) v(2)
.endc
.end

3.2.14 Switches

Two types of switches are available: a voltage controlled switch (type SXXXXXX, model SW)
and a current controlled switch (type WXXXXXXX, model CSW). A switching hysteresis may
be defined, as well as on- and off-resistances (0 < R < ∞).

General form:

SXXXXXXX N+ N− NC+ NC− MODEL <ON><OFF>
WYYYYYYY N+ N− VNAM MODEL <ON><OFF>

Examples:

s1 1 2 3 4 s w i t c h 1 ON
s2 5 6 3 0 sm2 o f f
Swi tch1 1 2 10 0 smodel1
w1 1 2 v c l o c k switchmod1
W2 3 0 vramp sm1 ON
w r e s e t 5 6 v c l c k l o s s y s w i t c h OFF

Nodes 1 and 2 are the nodes between which the switch terminals are connected. The model
name is mandatory while the initial conditions are optional. For the voltage controlled switch,
nodes 3 and 4 are the positive and negative controlling nodes respectively. For the current
controlled switch, the controlling current is that through the specified voltage source. The
direction of positive controlling current flow is from the positive node, through the source, to
the negative node.

The instance parameters ON or OFF are required, when the controlling voltage (current) starts
inside the range of the hysteresis loop (different outputs during forward vs. backward voltage
or current ramp). Then ON or OFF determine the initial state of the switch.
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3.2.15 Switch Model (SW/CSW)

The switch model allows an almost ideal switch to be described in ngspice. The switch is not
quite ideal, in that the resistance can not change from 0 to infinity, but must always have a finite
positive value. By proper selection of the on and off resistances, they can be effectively zero
and infinity in comparison to other circuit elements. The parameters available are:

Name Parameter Units Default Switch model
VT threshold voltage V 0.0 SW
IT threshold current A 0.0 CSW

VH hysteresis voltage V 0.0 SW
IH hysteresis current A 0.0 CSW

RON on resistance Ω 1.0 SW,CSW
ROFF off resistance Ω 1.0e+12 (*) SW,CSW

(*) Or 1/GMIN, if you have set GMIN to any other value, see the .OPTIONS control line
(15.1.2) for a description of GMIN, its default value results in an off-resistance of 1.0e+12
ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large discontinu-
ities to occur in the circuit node voltages. A rapid change such as that associated with a switch
changing state can cause numerical round-off or tolerance problems leading to erroneous results
or time step difficulties. The user of switches can improve the situation by taking the following
steps:

• First, it is wise to set ideal switch impedances just high or low enough to be negligible
with respect to other circuit elements. Using switch impedances that are close to "ideal"
in all cases aggravates the problem of discontinuities mentioned above. Of course, when
modeling real devices such as MOSFETS, the on resistance should be adjusted to a real-
istic level depending on the size of the device being modeled.

• If a wide range of ON to OFF resistance must be used in the switches (ROFF/RON
>1e+12), then the tolerance on errors allowed during transient analysis should be de-
creased by using the .OPTIONS control line and specifying TRTOL to be less than the
default value of 7.0.

• When switches are placed around capacitors, then the option CHGTOL should also be re-
duced. Suggested values for these two options are 1.0 and 1e-16 respectively. These
changes inform ngspice to be more careful around the switch points so that no errors are
made due to the rapid change in the circuit.
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Example input file:

Swi tch t e s t
. t r a n 2 us 5ms
* s w i t c h c o n t r o l v o l t a g e
v1 1 0 DC 0 . 0 PWL(0 0 2e−3 2 4e−3 0)
* s w i t c h c o n t r o l v o l t a g e s t a r t i n g i n s i d e h y s t e r e s i s window
* p l e a s e n o t e i n f l u e n c e o f i n s t a n c e p a r a m e t e r s ON, OFF
v2 2 0 DC 0 . 0 PWL(0 0 . 9 2e−3 2 4e−3 0 . 4 )
* s w i t c h c o n t r o l c u r r e n t
i 3 3 0 DC 0 . 0 PWL(0 0 2e−3 2m 4e−3 0) $ <−−− s w i t c h c o n t r o l c u r r e n t
* l o a d v o l t a g e
v4 4 0 DC 2 . 0
* i n p u t l o a d f o r c u r r e n t s o u r c e i 3
r3 3 33 10k
vm3 33 0 dc 0 $ <−−− measure t h e c u r r e n t
* oupu t l o a d r e s i s t o r s
r10 4 10 10k
r20 4 20 10k
r30 4 30 10k
r40 4 40 10k
*
s1 10 0 1 0 s w i t c h 1 OFF
s2 20 0 2 0 s w i t c h 1 OFF
s3 30 0 2 0 s w i t c h 1 ON
. model s w i t c h 1 sw v t =1 vh =0 .2 ron =1 r o f f =10k
*
w1 40 0 vm3 wswitch1 o f f
. model wswitch1 csw i t =1m i h =0 .2m ron =1 r o f f =10k
*
. c o n t r o l
run
p l o t v ( 1 ) v ( 1 0 )
p l o t v ( 1 0 ) vs v ( 1 ) $ <−− g e t h y s t e r e s i s l oop
p l o t v ( 2 ) v ( 2 0 ) $ <−−− d i f f e r e n t i n i t i a l v a l u e s
p l o t v ( 2 0 ) vs v ( 2 ) $ <−− g e t h y s t e r e s i s l oop
p l o t v ( 2 ) v ( 3 0 ) $ <−−− d i f f e r e n t i n i t i a l v a l u e s
p l o t v ( 3 0 ) vs v ( 2 ) $ <−− g e t h y s t e r e s i s l oop
p l o t v ( 4 0 ) vs vm3# br a nc h $ <−−− c u r r e n t c o n t r o l l e d s w i t c h h y s t e r e s i s
. endc
. end



Chapter 4

Voltage and Current Sources

4.1 Independent Sources for Voltage or Current

General form:

VXXXXXXX N+ N− <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>
IYYYYYYY N+ N− <<DC> DC/TRAN VALUE> <AC <ACMAG <ACPHASE>>>
+ <DISTOF1 <F1MAG <F1PHASE>>> <DISTOF2 <F2MAG <F2PHASE>>>

Examples:

VCC 10 0 DC 6
VIN 13 2 0 .001 AC 1 SIN (0 1 1MEG)
ISRC 23 21 AC 0 .333 4 5 . 0 SFFM(0 1 10K 5 1K)
VMEAS 12 9
VCARRIER 1 0 DISTOF1 0 . 1 −90.0
VMODULATOR 2 0 DISTOF2 0 . 0 1
IIN1 1 5 AC 1 DISTOF1 DISTOF2 0 .001

n+ and n- are the positive and negative nodes, respectively. Note that voltage sources need not
be grounded. Positive current is assumed to flow from the positive node, through the source, to
the negative node. A current source of positive value forces current to flow out of the n+ node,
through the source, and into the n- node. Voltage sources, in addition to being used for circuit
excitation, are the “ammeters” for ngspice, that is, zero valued voltage sources may be inserted
into the circuit for the purpose of measuring current. They of course have no effect on circuit
operation since they represent short-circuits.

DC/TRAN is the dc and transient analysis value of the source. If the source value is zero both for
dc and transient analyses, this value may be omitted. If the source value is time-invariant (e.g.,
a power supply), then the value may optionally be preceded by the letters DC.

ACMAG is the ac magnitude and ACPHASE is the ac phase. The source is set to this value in the
ac analysis. If ACMAG is omitted following the keyword AC, a value of unity is assumed. If
ACPHASE is omitted, a value of zero is assumed. If the source is not an ac small-signal input,
the keyword AC and the ac values are omitted.

DISTOF1 and DISTOF2 are the keywords that specify that the independent source has distortion
inputs at the frequencies F1 and F2 respectively (see the description of the .DISTO control line).
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The keywords may be followed by an optional magnitude and phase. The default values of the
magnitude and phase are 1.0 and 0.0 respectively.

Any independent source can be assigned a time-dependent value for transient analysis. If a
source is assigned a time-dependent value, the time-zero value is used for dc analysis. There
are nine independent source functions:

• pulse,

• exponential,

• sinusoidal,

• piece-wise linear,

• single-frequency FM

• AM

• transient noise

• random voltages or currents

• and external data (only with ngspice shared library).

If parameters other than source values are omitted or set to zero, the default values shown are
assumed. (TSTEP is the printing increment and TSTOP is the final time (see the .TRAN control
line for explanation)).

4.1.1 Pulse

General form:

PULSE( V1 V2 TD TR TF PW PER)

Examples:

VIN 3 0 PULSE(−1 1 2NS 2NS 2NS 50NS 100NS)

Name Parameter Default Value Units
V1 Initial value - V , A
V2 Pulsed value - V , A
TD Delay time 0.0 sec
TR Rise time TSTEP sec
TF Fall time TSTEP sec
PW Pulse width TSTOP sec
PER Period TSTOP sec

A single pulse so specified is described by the following table:



4.1. INDEPENDENT SOURCES FOR VOLTAGE OR CURRENT 81

Time Value
0 V1

TD V1
TD+TR V2

TD+TR+PW V2
TD+TR+PW+TF V1

TSTOP V1

Intermediate points are determined by linear interpolation.

4.1.2 Sinusoidal

General form:

SIN (VO VA FREQ TD THETA)

Examples:

VIN 3 0 SIN (0 1 100MEG 1NS 1E10 )

Name Parameter Default Value Units
VO Offset - V , A
VA Amplitude - V , A

FREQ Frequency 1/T STOP Hz
TD Delay 0.0 sec

THETA Damping factor 0.0 1/sec

The shape of the waveform is described by the following formula:

V (t) =

{
V 0 if 0≤ t < T D
V 0+VAe−(t−T D)T HETA sin(2πFREQ(t−T D)) if T D≤ t < T STOP

(4.1)

4.1.3 Exponential

General Form:

EXP( V1 V2 TD1 TAU1 TD2 TAU2)

Examples:

VIN 3 0 EXP(−4 −1 2NS 30NS 60NS 40NS)

Name Parameter Default Value Units
V1 Initial value - V , A
V2 pulsed value - V , A

TD1 rise delay time 0.0 sec
TAU1 rise time constant TSTEP sec
TD2 fall delay time TD1+TSTEP sec

TAU2 fall time constant TSTEP sec

The shape of the waveform is described by the following formula:



82 CHAPTER 4. VOLTAGE AND CURRENT SOURCES

Let V 21 =V 2−V 1 V 12 =V 1−V 2:

V (t) =


V 1 if 0≤ t < T D1,

V 1+V 21
(

1− e−
(t−T D1)

TAU1

)
if T D1≤ t < T D2,

V 1+V 21
(

1− e−
(t−T D1)

TAU1

)
+V 12

(
1− e−

(t−T D2)
TAU2

)
if T D2≤ t < T STOP.

(4.2)

4.1.4 Piece-Wise Linear

General Form:

PWL( T1 V1 <T2 V2 T3 V3 T4 V4 . . . > ) < r = va lue > < t d = va lue >

Examples:

VCLOCK 7 5 PWL(0 −7 10NS −7 11NS −3 17NS −3 18NS −7 50NS −7) r =0 t d =15NS

Each pair of values (Ti, Vi) specifies that the value of the source is Vi (in Volts or Amps) at
time = Ti. The value of the source at intermediate values of time is determined by using linear
interpolation on the input values. The parameter r determines a repeat time point. If r is not
given, the whole sequence of values (Ti, Vi) is issued once, then the output stays at its final
value. If r = 0, the whole sequence from time = 0 to time = Tn is repeated forever. If r = 10ns,
the sequence between 10ns and 50ns is repeated forever. the r value has to be one of the time
points T1 to Tn of the PWL sequence. If td is given, the whole PWL sequence is delayed by a
delay time time = td. The current source still needs to be patched, td and r are not yet available.

4.1.5 Single-Frequency FM

General Form:

SFFM(VO VA FC MDI FS )

Examples:

V1 12 0 SFFM(0 1M 20K 5 1K)

Name Parameter Default value Units
VO Offset - V , A
VA Amplitude - V , A
FC Carrier frequency 1/T STOP Hz

MDI Modulation index -
FS Signal frequency 1/T STOP Hz

The shape of the waveform is described by the following equation:

V (t) =VO +VA sin(2πFCt +MDI sin(2πFSt)) (4.3)
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4.1.6 Amplitude modulated source (AM)

General Form:

AM(VA VO MF FC TD)

Examples:

V1 12 0 AM( 0 . 5 1 20K 5MEG 1m)

Name Parameter Default value Units
VA Amplitude - V , A
VO Offset - V , A
MF Modulating frequency - Hz
FC Carrier frequency 1/T STOP Hz
TD Signal delay - s

The shape of the waveform is described by the following equation:

V (t) =VA ∗ (VO+ sin(2πMFt))∗ sin(2πFCt) (4.4)

4.1.7 Transient noise source

General Form:

TRNOISE (NA NT NALPHA NAMP RTSAM RTSCAPT RTSEMT)

Examples:

VNoiw 1 0 DC 0 TRNOISE(20 n 0 . 5 n 0 0) $ w h i t e
VNoi1of 1 0 DC 0 TRNOISE(0 10p 1 . 1 12p ) $ 1 / f
VNoiw1of 1 0 DC 0 TRNOISE(20 10p 1 . 1 12p ) $ w h i t e and 1 / f
IALL 10 0 DC 0 t r n o i s e (1m 1u 1 . 0 0 . 1m 15m 22u 50u ) $ whi te , 1 / f , RTS

Transient noise is an experimental feature allowing (low frequency) transient noise injection and
analysis. See chapter 15.3.10 for a detailed description. NA is the Gaussian noise rms voltage
amplitude, NT is the time between sample values (breakpoints will be enforced on multiples of
this value). NALPHA (exponent to the frequency dependency), NAMP (rms voltage or current
amplitude) are the parameters for 1/f noise, RTSAM the random telegraph signal amplitude,
RTSCAPT the mean of the exponential distribution of the trap capture time, and RTSEMT
its emission time mean. White Gaussian, 1/f, and RTS noise may be combined into a single
statement.

Name Parameter Default value Units
NA Rms noise amplitude (Gaussian) - V , A
NT Time step - sec

NALPHA 1/f exponent 0 < α < 2 -
NAMP Amplitude (1/f) - V , A

RTSAM Amplitude - V , A
RTSCAPT Trap capture time - sec
RTSEMT Trap emission time - sec
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If you set NT and RTSAM to 0, the noise option TRNOISE ... is ignored. Thus you may switch
off the noise contribution of an individual voltage source VNOI by the command

alter @vnoi[trnoise] = [ 0 0 0 0 ] $ no noise

alter @vrts[trnoise] = [ 0 0 0 0 0 0 0] $ no noise

See chapt. 17.5.3 for the alter command.

You may switch off all TRNOISE noise sources by setting

set notrnoise

to your .spiceinit file (for all your simulations) or into your control section in front of the next
run or tran command (for this specific and all following simulations). The command

unset notrnoise

will reinstate all noise sources.

The noise generators are implemented into the independent voltage (vsrc) and current (isrc)
sources.

4.1.8 Random voltage source

The TRRANDOM option yields statistically distributed voltage values, derived from the ngspice
random number generator. These values may be used in the transient simulation directly within
a circuit, e.g. for generating a specific noise voltage, but especially they may be used in the con-
trol of behavioral sources (B, E, G sources 5, voltage controllable A sources 12, capacitors 3.2.8,
inductors 3.2.12, or resistors 3.2.4) to simulate the circuit dependence on statistically varying
device parameters. A Monte-Carlo simulation may thus be handled in a single simulation run.

General Form:

TRRANDOM(TYPE TS <TD <PARAM1 <PARAM2>>>)

Examples:

VR1 r1 0 dc 0 t r r a n d o m (2 10m 0 1) $ G a u s s i a n

TYPE determines the random variates generated: 1 is uniformly distributed, 2 Gaussian, 3
exponential, 4 Poisson. TS is the duration of an individual voltage value. TD is a time delay
with 0 V output before the random voltage values start up. PARAM1 and PARAM2 depend on
the type selected.

TYPE description PARAM1 default PARAM2 default
1 Uniform Range 1 Offset 0
2 Gaussian Standard Dev. 1 Mean 0
3 Exponential Mean 1 Offset 0
4 Poisson Lambda 1 Offset 0

4.1.9 External voltage or current input

General Form:

EXTERNAL
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Examples:

Vex 1 0 dc 0 e x t e r n a l
I e x i 1 i 2 dc 0 e x t e r n a l <m = xx>

Voltages or currents may be set from the calling process, if ngspice is compiled as a shared
library and loaded by the process. See chapt 19.6.3 for an explanation.

4.1.10 Arbitrary Phase Sources

The XSPICE option supports arbitrary phase independent sources that output at TIME=0.0 a
value corresponding to some specified phase shift. Other versions of SPICE use the TD (delay
time) parameter to set phase-shifted sources to their time-zero value until the delay time has
elapsed. The XSPICE phase parameter is specified in degrees and is included after the SPICE3
parameters normally used to specify an independent source. Partial XSPICE deck examples of
usage for pulse and sine waveforms are shown below:

* Phase shift is specified after Berkeley defined parameters
* on the independent source cards. Phase shift for both of the
* following is specified as +45 degrees
*
v1 1 0 0.0 sin(0 1 1k 0 0 45.0)
r1 1 0 1k
*
v2 2 0 0.0 pulse(-1 1 0 1e-5 1e-5 5e-4 1e-3 45.0)
r2 2 0 1k
*

4.2 Linear Dependent Sources

Ngspice allows circuits to contain linear dependent sources characterized by any of the four
equations

i = gv v = ev i = f i v = hi

where g, e, f , and h are constants representing transconductance, voltage gain, current gain,
and transresistance, respectively. Non-linear dependent sources for voltages or currents (B, E,
G) are described in chapter 5.

4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)

General form:

GXXXXXXX N+ N− NC+ NC− VALUE <m= val >

Examples:

G1 2 0 5 0 0 . 1
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n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative

node. nc+ and nc- are the positive and negative controlling nodes, respectively. value is the
transconductance (in mhos). m is an optional multiplier to the output current. val may be a
numerical value or an expression according to 2.8.5 containing references to other parameters.

4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)

General form:

EXXXXXXX N+ N− NC+ NC− VALUE

Examples:

E1 2 3 14 1 2 . 0

n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and negative
controlling nodes, respectively. value is the voltage gain.

4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)

General form:

FXXXXXXX N+ N− VNAM VALUE <m= val >

Examples:

F1 13 5 VSENS 5 m=2

n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. vnam is the name of a voltage source through
which the controlling current flows. The direction of positive controlling current flow is from
the positive node, through the source, to the negative node of vnam. value is the current gain.
m is an optional multiplier to the output current.

4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)

General form:

HXXXXXXX n+ n− vnam v a l u e

Examples:

HX 5 17 VZ 0 . 5K

n+ and n- are the positive and negative nodes, respectively. vnam is the name of a voltage source
through which the controlling current flows. The direction of positive controlling current flow
is from the positive node, through the source, to the negative node of vnam. value is the
transresistance (in ohms).
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4.2.5 Polynomial Source Compatibility

Dependent polynomial sources available in SPICE2G6 are fully supported in ngspice using the
XSPICE extension (25.1). The form used to specify these sources is shown in Table 4.1. For
details on its usage please see chapter 5.2.4.

Dependent Polynomial Sources
Source Type Instance Card
POLYNOMIAL VCVS EXXXXXXX N+ N- POLY(ND) NC1+ NC1- P0 (P1...)
POLYNOMIAL VCCS GXXXXXXX N+ N- POLY(ND) NC1+ NC1- P0 (P1...)
POLYNOMIAL CCCS FXXXXXXX N+ N- POLY(ND) VNAM1 !VNAM2...? P0 (P1...)
POLYNOMIAL CCVS HXXXXXXX N+ N- POLY(ND) VNAM1 !VNAM2...? P0 (P1...)

Table 4.1: Dependent Polynomial Sources
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Chapter 5

Non-linear Dependent Sources (Behavioral
Sources)

The non-linear dependent sources B ( see chapt. 5.1), E (see 5.2), G see (5.3) described in
this chapter allow to generate voltages or currents which result from evaluating a mathematical
expression. Internally E and G sources are converted to the more general B source. All three
sources may be used to introduce behavioral modeling and analysis.

5.1 Bxxxx: Nonlinear dependent source (ASRC)

5.1.1 Syntax and usage

General form:

BXXXXXXX n+ n− < i =expr > <v=expr > < t c 1 = va lue > < t c 2 = va lue >
+ <temp= va lue > <dtemp= va lue >

Examples:

B1 0 1 I = cos ( v ( 1 ) ) + s i n ( v ( 2 ) )
B2 0 1 V= l n ( cos ( l o g ( v ( 1 , 2 ) ^ 2 ) ) ) − v ( 3 ) ^ 4 + v ( 2 ) ^ v ( 1 )
B3 3 4 I =17
B4 3 4 V=exp ( p i ^ i ( vdd ) )
B5 2 0 V = V( 1 ) < {Vlow} ? {Vlow} : V( 1 ) > { Vhigh } ? { Vhigh } : V( 1 )

n+ is the positive node, and n- is the negative node. The values of the V and I parameters
determine the voltages and currents across and through the device, respectively. If I is given
then the device is a current source, and if V is given the device is a voltage source. One and only
one of these parameters must be given.

A simple model is implemented for temperature behavior by the formula:

I(T ) = I(TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(5.1)

or

89
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V (T ) =V (TNOM)
(

1+TC1(T −TNOM)+TC2(T −TNOM)2
)

(5.2)

In the above formula, “T ” represents the instance temperature, which can be explicitly set using
the temp keyword or calculated using the circuit temperature and dtemp, if present. If both
temp and dtemp are specified, the latter is ignored.

The small-signal AC behavior of the nonlinear source is a linear dependent source (or sources)
with a proportionality constant equal to the derivative (or derivatives) of the source at the DC
operating point. The expressions given for V and I may be any function of voltages and currents
through voltage sources in the system.

The following functions of a single real variable are defined:

Trigonometric functions: cos, sin, tan, acos, asin, atan

Hyperbolic functions: cosh, sinh, acosh, asinh, atanh

Exponential and logarithmic: exp, ln, log

Other: abs, sqrt, u, u2, uramp, floor, ceil

Functions of two variables are: min, max, pow

Functions of three variables are: a ? b:c

The function “u” is the unit step function, with a value of one for arguments greater than zero
and a value of zero for arguments less than zero. The function “u2” returns a value of zero
for arguments less than zero, one for arguments greater than one and assumes the value of the
argument between these limits. The function "uramp" is the integral of the unit step: for an
input x, the value is zero if x is less than zero, or if x is greater than zero the value is x. These
three functions are useful in synthesizing piece-wise non-linear functions, though convergence
may be adversely affected.

The following standard operators are defined: +, -, *, /, ^, unary -

Logical operators are !=, <>, >=, <=, ==, >, <, ||, &&, ! .

A ternary function is defined as a ? b : c , which means IF a, THEN b, ELSE c. Be
sure to place a space in front of ’?’ to allow the parser distinguishing it from other tokens.

Example: Ternary function

* B s o u r c e t e s t Clamped v o l t a g e s o u r c e
* C . P . Basso " Switched−mode power s u p p l i e s " , New York , 2008
. param Vhigh = 4 . 6
. param Vlow = 0 . 4
Vin1 1 0 DC 0 PWL(0 0 1u 5)
Bcl 2 0 V = V( 1 ) < Vlow ? Vlow : V( 1 ) > Vhigh ? Vhigh : V( 1 )
. c o n t r o l
s e t n o a s k q u i t
t r a n 5n 1u
p l o t V( 2 ) vs V( 1 )
. endc
. end
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If the argument of log, ln, or sqrt becomes less than zero, the absolute value of the argument is
used. If a divisor becomes zero or the argument of log or ln becomes zero, an error will result.
Other problems may occur when the argument for a function in a partial derivative enters a
region where that function is undefined.

Parameters may be used like {Vlow} shown in the example above. Parameters will be evaluated
upon set up of the circuit, vectors like V(1) will be evaluated during the simulation.

To get time into the expression you can integrate the current from a constant current source
with a capacitor and use the resulting voltage (don’t forget to set the initial voltage across the
capacitor).

Non-linear resistors, capacitors, and inductors may be synthesized with the nonlinear dependent
source. Nonlinear resistors, capacitors and inductors are implemented with their linear counter-
parts by a change of variables implemented with the nonlinear dependent source. The following
subcircuit will implement a nonlinear capacitor:

Example: Non linear capacitor

. Subck t n l c a p pos neg
* Bx : c a l c u l a t e f ( i n p u t v o l t a g e )
Bx 1 0 v = f ( v ( pos , neg ) )
* Cx : l i n e a r c a p a c i t a n c e
Cx 2 0 1
* Vx : Ammeter t o measure c u r r e n t i n t o t h e c a p a c i t o r
Vx 2 1 DC 0 V o l t s
* Dr ive t h e c u r r e n t t h r o u g h Cx back i n t o t h e c i r c u i t
Fx pos neg Vx 1
. ends

Example for f(v(pos,neg)):

Bx 1 0 V = v ( pos , neg )* v ( pos , neg )

Non-linear resistors or inductors may be described in a similar manner. An example for a
nonlinear resistor using this template is shown below.

Example: Non linear resistor

* use o f ’ h e r t z ’ v a r i a b l e i n n o n l i n e a r r e s i s t o r
* . param r b a s e =1k
* some t e s t s
B1 1 0 V = h e r t z *v ( 3 3 )
B2 2 0 V = v ( 3 3 ) * h e r t z
b3 3 0 V = 6 .283 e3 / ( h e r t z +6 .283 e3 )* v ( 3 3 )
V1 33 0 DC 0 AC 1
*** T r a n s l a t e R1 10 0 R= ’1 k / s q r t (HERTZ) ’ t o B s o u r c e ***
. Subck t n l r e s pos neg rb = r b a s e
* Bx : c a l c u l a t e f ( i n p u t v o l t a g e )
Bx 1 0 v = −1 / { rb } / s q r t (HERTZ) * v ( pos , neg )
* Rx : l i n e a r r e s i s t a n c e
Rx 2 0 1
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Example: Non linear resistor (continued)

* Vx : Ammeter t o measure c u r r e n t i n t o t h e r e s i s t o r
Vx 2 1 DC 0 V o l t s
* Dr ive t h e c u r r e n t t h r o u g h Rx back i n t o t h e c i r c u i t
Fx pos neg Vx 1
. ends
Xres 33 10 n l r e s rb =1k
* Rres 33 10 1k
Vres 10 0 DC 0
. c o n t r o l
d e f i n e check ( a , b ) vecmax ( abs ( a − b ) )
ac l i n 10 100 1k
* some ch ec k s
p r i n t v ( 1 ) v ( 2 ) v ( 3 )
i f check ( v ( 1 ) , f r e q u e n c y ) < 1e−12
echo "INFO : ok "
end
p l o t v r e s # b r a nc h
. endc
. end

5.1.2 Special B-Source Variables time, temper, hertz

The special variables ’time’ and ’temper’ are available in a transient analysis, reflecting the
actual simulation time and circuit temperature. ’temper’ returns the circuit temperature, given
in degree C (see 2.11). The variable ’hertz’ is available in an AC analysis. ’time’ is zero in
the AC analysis, ’hertz’ is zero during transient analysis. Using the variable ’hertz’ may cost
some CPU time if you have a large circuit, because for each frequency the operating point has
to be determined before calculating the AC response.

5.1.3 par(’expression’)

The B source syntax may also be used in output lines like .plot as algebraic expressions for
output (see chapt.15.6.6 ).

5.1.4 Piecewise Linear Function: pwl

Both B source types may contain a piece-wise linear dependency of one network variable:

Example: pwl_current

Bdio 1 0 I = pwl ( v (A) , 0 , 0 , 33 ,10m, 100 ,33m, 200 ,50m)

v(A) is the independent variable x. Each pair of values following describes the x,y functional
relation: In this example at node A voltage of 0V the current of 0A is generated - next pair gives
10mA flowing from ground to node 1 at 33V on node A and so forth.

The same is possible for voltage sources:
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Example: pwl_voltage

B l i m i t b 0 V = pwl ( v ( 1 ) , −4 ,0 , −2 ,2 , 2 , 4 , 4 , 5 , 6 , 5 )

Monotony of the independent variable in the pwl definition is checked - non-monotonic x entries
will stop the program execution. v(1) may be replaced by a controlling current source. v(1) may
also be replaced by an expression, e.g. -2*i(Vin). The value pairs may also be parameters, which
have to be defined before by a .param statement. An example for the pwl function using all of
these options is shown below:
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Example: pwl function in B source

D e m o n s t r a t e s usage o f t h e pwl f u n c t i o n i n an B s o u r c e (ASRC)
* Also e m u l a t e s t h e TABLE f u n c t i o n wi th l i m i t s

. param x0=−4 y0=0

. param x1=−2 y1=2

. param x2=2 y2=−2

. param x3=4 y3=1

. param xx0=x0−1

. param xx3=x3+1

Vin 1 0 DC=0V
R 1 0 2

* no l i m i t s o u t s i d e o f t h e t a b u l a t e d x v a l u e s ( c o n t i n u e s l i n e a r i l y )
B t e s t 2 2 0 I = pwl ( v ( 1 ) , ’ x0 ’ , ’ y0 ’ , ’ x1 ’ , ’ y1 ’ , ’ x2 ’ , ’ y2 ’ , ’ x3 ’ , ’ y3 ’ )

* l i k e TABLE f u n c t i o n wi th l i m i t s :
B t e s t 3 3 0 I = ( v ( 1 ) < ’ x0 ’ ) ? ’ y0 ’ : ( v ( 1 ) < ’ x3 ’ ) ?
+ pwl ( v ( 1 ) , ’ x0 ’ , ’ y0 ’ , ’ x1 ’ , ’ y1 ’ , ’ x2 ’ , ’ y2 ’ , ’ x3 ’ , ’ y3 ’ ) : ’ y3 ’

* more e f f i c i e n t and e l e g a n t TABLE f u n c t i o n wi th l i m i t s
* ( v o l t a g e c o n t r o l l e d ) :
B t e s t 4 4 0 I = pwl ( v ( 1 ) ,
+ ’ xx0 ’ , ’ y0 ’ , ’ x0 ’ , ’ y0 ’ ,
+ ’ x1 ’ , ’ y1 ’ ,
+ ’ x2 ’ , ’ y2 ’ ,
+ ’ x3 ’ , ’ y3 ’ , ’ xx3 ’ , ’ y3 ’ )
*
* more e f f i c i e n t and e l e g a n t TABLE f u n c t i o n wi th l i m i t s
* ( c o n t r o l l e d by c u r r e n t ) :
B t e s t 5 5 0 I = pwl (−2* i ( Vin ) ,
+ ’ xx0 ’ , ’ y0 ’ , ’ x0 ’ , ’ y0 ’ ,
+ ’ x1 ’ , ’ y1 ’ ,
+ ’ x2 ’ , ’ y2 ’ ,
+ ’ x3 ’ , ’ y3 ’ , ’ xx3 ’ , ’ y3 ’ )

R i n t 2 2 0 1
R i n t 3 3 0 1
R i n t 4 4 0 1
R i n t 5 5 0 1
. c o n t r o l
dc Vin −6 6 0 . 2
p l o t v ( 2 ) v ( 3 ) v (4)−0.5 v ( 5 ) + 0 . 5
. endc

. end
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5.2 Exxxx: non-linear voltage source*

5.2.1 VOL

General form:

EXXXXXXX n+ n− v o l = ’ expr ’

Examples:

E41 4 0 v o l = ’V( 3 ) *V(3)−Offs ’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in chapter
5.1. It may contain parameters (2.8.1) and the special variables time, temper, hertz (5.1.2). ’ or
{, } may be used to delimit the function.

5.2.2 VALUE

Optional syntax:

EXXXXXXX n+ n− v a l u e ={ exp r }

Examples:

E41 4 0 v a l u e = {V( 3 ) *V(3)−Off s }

5.2.3 TABLE

Data may be entered from the listings of a data table similar to the pwl B-Source (5.1.4). Data
are grouped into x, y pairs. Expression may be an equation or an expression containing node
voltages or branch currents (in the form of i(vm)) and any other terms as given for the B source
and described in chapter 5.1. It may contain parameters (2.8.1). ’ or {, } may be used to delimit
the function. Expression delivers the x-value, which is used to generate a corresponding y-
value, according to the tabulated value pairs, using linear interpolation. If the x-value is below
x0 , y0 is returned, above x2 y2 is returned (limiting function). The value pairs have to be real
numbers, parameters are not allowed!

Syntax for data entry from table:

Exxx n1 n2 TABLE { e x p r e s s i o n } = ( x0 , y0 ) ( x1 , y1 ) ( x2 , y2 )

Example (simple comparator):

ECMP 11 0 TABLE {V( 1 0 , 9 ) } = (−5MV, 0V) (5MV, 5V)

5.2.4 POLY

Polynomial sources are only available when the XSPICE option (see 32) is enabled.
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General form:

EXXXX N+ N− POLY(ND) NC1+ NC1− (NC2+ NC2− . . . ) P0 ( P1 . . . )

Example:

ENONLIN 100 101 POLY( 2 ) 3 0 4 0 0 . 0 1 3 . 6 0 . 2 0 .005

POLY(ND) Specifies the number of dimensions of the polynomial. The number of pairs of
controlling nodes must be equal to the number of dimensions.

(N+) and (N-) nodes are output nodes. Positive current flows from the (+) node through the
source to the (-) node.

The <NC1+> and <NC1-> are in pairs and define a set of controlling voltages. A particular
node can appear more than once, and the output and controlling nodes need not be different.

The example yields a voltage output controlled by two input voltages v(3,0) and v(4,0). Four
polynomial coefficients are given. The equivalent function to generate the output is:

0 + 13.6 * v(3) + 0.2 * v(4) + 0.005 * v(3) * v(3)

Generally you will set the equation according to

POLY(1) y = p0 + k1*X1 + p2*X1*X1 + p3*X1*X1*X1 + ...
POLY(2) y = p0 + p1*X1 + p2*X2 +

+ p3*X1*X1 + p4*X2*X1 + p5*X2*X2 +
+ p6*X1*X1*X1 + p7*X2*X1*X1 + p8*X2*X2*X1 +
+ p9*X2*X2*X2 + ...

POLY(3) y = p0 + p1*X1 + p2*X2 + p3*X3 +
+ p4*X1*X1 + p5*X2*X1 + p6*X3*X1 +
+ p7*X2*X2 + p8*X2*X3 + p9*X3*X3 + ...

where X1 is the voltage difference of the first input node pair, X2 of the second pair and so
on. Keeping track of all polynomial coefficient obviously becomes rather tedious for larger
polynomials.

5.2.5 LAPLACE

Currently ngspice does not offer a direct E-Source element with the LAPLACE option. There
is however, a XSPICE code model equivalent called x_fer (see chapt. 12.2.16), which you may
invoke manually. The XSPICE option has to enabled (32.1). AC (15.3.1) and transient analysis
(15.3.9) is supported.

The following E-Source:

ELOPASS 4 0 LAPLACE {V( 1 ) } {10 / ( s /6800 + 1)}

may be replaced by:

AELOPASS 1 i n t _ 4 f i l t e r 1
. model f i l t e r 1 x _ f e r ( g a i n =10 i n t _ i c =[0 0 ] num_coeff = [ 1 ]
+ d e n _ c o e f f =[1 1 . 4 7 e−4]
ELOPASS 4 0 i n t _ 4 0 1
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where you have the voltage of node 1 as input, an intermediate output node int_4 and an E-
source as buffer, so to keep the name ’ELOPASS’ available if further processing is required.

If the controlling expression is more complex than just a voltage node, you may add a B-Source
(5.1) for evaluating the expression before entering the A-device.

E-Source with complex controlling expression:

ELOPASS 4 0 LAPLACE {V( 1 ) * v ( 2 ) } {10 / ( s /6800 + 1)}

may be replaced by:

BELOPASS i n t _ 1 0 V=V( 1 ) * v ( 2 )
AELOPASS i n t _ 1 i n t _ 4 f i l t e r 1
. model f i l t e r 1 x _ f e r ( g a i n =10 i n t _ i c =[0 0 ] num_coeff = [ 1 ]
+ d e n _ c o e f f =[1 1 . 4 7 e−4]
ELOPASS 4 0 i n t _ 4 0 1

5.3 Gxxxx: non-linear current source*

5.3.1 CUR

General form:

GXXXXXXX n+ n− c u r = ’ expr ’ <m= val >

Examples:

G51 55 225 c u r = ’V( 3 ) *V(3)−Offs ’

Expression may be an equation or an expression containing node voltages or branch currents
(in the form of i(vm)) and any other terms as given for the B source and described in chapter
5.1. It may contain parameters (2.8.1) and special variables (5.1.2). m is an optional multiplier
to the output current. val may be a numerical value or an expression according to 2.8.5 con-
taining only references to other parameters (no node voltages or branch currents!), because it is
evaluated before the simulation commences.

5.3.2 VALUE

Optional syntax:

GXXXXXXX n+ n− v a l u e = ’ expr ’ <m= va l >

Examples:

G51 55 225 v a l u e = ’V( 3 ) *V(3)−Offs ’

5.3.3 TABLE

A data entry by a tabulated listing is available with syntax similar to the E-Source (see chapt.
5.2.3).



98 CHAPTER 5. NON-LINEAR DEPENDENT SOURCES (BEHAVIORAL SOURCES)

Syntax for data entry from table:

Gxxx n1 n2 TABLE { e x p r e s s i o n } = ( x0 , y0 ) ( x1 , y1 ) ( x2 , y2 ) <m= val >

Example (simple comparator with current output and voltage control):

GCMP 0 11 TABLE {V( 1 0 , 9 ) } = (−5MV, 0V) (5MV, 5V)
R 11 0 1k

m is an optional multiplier to the output current. val may be a numerical value or an expression
according to 2.8.5 containing only references to other parameters (no node voltages or branch
currents!), because it is evaluated before the simulation commences.

5.3.4 POLY

see E-Source at chapt. 5.2.4.

5.3.5 LAPLACE

See E-Source, chapt. 5.2.5 , for an equivalent code model replacement.

5.3.6 Example

An example file is given below.



5.4. DEBUGGING A BEHAVIORAL SOURCE 99

Example input file:

VCCS, VCVS, non− l i n e a r dependency
. param Vi=1
. param Of f s = ’0 .01* Vi ’
* VCCS depend ing on V( 3 )
B21 i n t 1 0 V = V( 3 ) *V( 3 )
G1 21 22 i n t 1 0 1
* measure c u r r e n t t h r o u g h VCCS
vm 22 0 dc 0
R21 21 0 1
* new VCCS depend ing on V( 3 )
G51 55 225 c u r = ’V( 3 ) *V(3)−Offs ’
* measure c u r r e n t t h r o u g h VCCS
vm5 225 0 dc 0
R51 55 0 1
* VCVS depend ing on V( 3 )
B31 i n t 2 0 V = V( 3 ) *V( 3 )
E1 1 0 i n t 2 0 1
R1 1 0 1
* new VCVS depend ing on V( 3 )
E41 4 0 v o l = ’V( 3 ) *V(3)−Offs ’
R4 4 0 1
* c o n t r o l v o l t a g e
V1 3 0 PWL(0 0 100u { Vi } )
. c o n t r o l
s e t n o a s k q u i t
t r a n 10n 100u u i c
p l o t i ( E1 ) i ( E41 )
p l o t i (vm) i ( vm5 )
. endc
. end

*) To get this functionality, the compatibility mode has to be set in spinit or .spiceinit by set
ngbehavior=all.

5.4 Debugging a behavioral source

The B, E, G, sources and the behavioral R, C, L elements are powerful tools to set up user
defined models. Unfortunately debugging these models is not very comfortable.
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Example input file with bug (log(-2)):

B s o u r c e debugg ing

V1 1 0 1
V2 2 0 −2

E41 4 0 v o l = ’V( 1 ) * l o g (V( 2 ) ) ’

. c o n t r o l
t r a n 1 1
. endc

. end

The input file given above results in an error message:

Error: -2 out of range for log

In this trivial example, the reason and location for the bug is obvious. However, if you have
several equations using behavioral sources, and several occurrences of the log function, then
debugging is nearly impossible.

However, if the variable ngdebug (see 17.7) is set (e.g. in file .spiceinit), a more distinctive
error message is issued, which (after some closer investigation) will reveal the location and
value of the buggy parameter.

Detailed error message for input file with bug (log(-2)):

E r r o r : −2 o u t o f r a n g e f o r l o g
c a l l i n g PTeval , t r e e =

( v0 ) * ( l o g ( v1 ) )
d / d v0 : l o g ( v1 )
d / d v1 : ( v0 ) * ( ( 0 . 4 3 4 2 9 4 ) / ( v1 ) )
v a l u e s : va r0 = 1

va r1 = −2

If variable strict_errorhandling (see 17.7) is set, ngspice exits after this message. If not, gmin
and source stepping may be started, typically without success.



Chapter 6

Transmission Lines

Ngspice implements both the original SPICE3f5 transmission lines models and the one intro-
duced with KSPICE. The latter provide an improved transient analysis of lossy transmission
lines. Unlike SPICE models, which uses the state-based approach to simulate lossy transmis-
sion lines, KSPICE simulates lossy transmission lines and coupled multiconductor line systems
using the recursive convolution method. The impulse response of an arbitrary transfer function
can be determined by deriving a recursive convolution from the Pade approximations of the
function. We use this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
been proved to give a speedup of one to two orders of magnitude over SPICE3f5.

6.1 Lossless Transmission Lines

General form:

TXXXXXXX N1 N2 N3 N4 Z0=VALUE <TD=VALUE> <F=FREQ <NL=NRMLEN>>
+ <IC=V1 , I1 , V2 , I2 >

Examples:

T1 1 0 2 0 Z0=50 TD=10NS

n1 and n2 are the nodes at port 1; n3 and n4 are the nodes at port 2. z0 is the characteristic
impedance. The length of the line may be expressed in either of two forms. The transmission
delay, td, may be specified directly (as td=10ns, for example). Alternatively, a frequency f may
be given, together with nl, the normalized electrical length of the transmission line with respect
to the wavelength in the line at the frequency “f”. If a frequency is specified but nl is omitted,
0.25 is assumed (that is, the frequency is assumed to be the quarter-wave frequency). Note that
although both forms for expressing the line length are indicated as optional, one of the two must
be specified.

Note that this element models only one propagating mode. If all four nodes are distinct in the ac-
tual circuit, then two modes may be excited. To simulate such a situation, two transmission-line
elements are required. (see the example in chapt. 21.7 for further clarification.) The (optional)
initial condition specification consists of the voltage and current at each of the transmission line
ports. Note that the initial conditions (if any) apply “only” if the UIC option is specified on the
.TRAN control line.
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Note that a lossy transmission line (see below) with zero loss may be more accurate than the
lossless transmission line due to implementation details.

6.2 Lossy Transmission Lines

General form:

OXXXXXXX n1 n2 n3 n4 mname

Examples:

O23 1 0 2 0 LOSSYMOD
OCONNECT 10 5 20 5 INTERCONNECT

This is a two-port convolution model for single conductor lossy transmission lines. n1 and n2
are the nodes at port 1; n3 and n4 are the nodes at port 2. Note that a lossy transmission line
with zero loss may be more accurate than the lossless transmission line due to implementation
details.

6.2.1 Lossy Transmission Line Model (LTRA)

The uniform RLC/RC/LC/RG transmission line model (referred to as the LTRA model hence-
forth) models a uniform constant-parameter distributed transmission line. The RC and LC cases
may also be modeled using the URC and TRA models; however, the newer LTRA model is usu-
ally faster and more accurate than the others. The operation of the LTRA model is based on the
convolution of the transmission line’s impulse responses with its inputs (see [8]). The LTRA
model takes a number of parameters, some of which must be given and some of which are
optional.
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Name Parameter Units/Type Default Example
R resistance/length Ω/unit 0.0 0.2
L inductance/length H/unit 0.0 9.13e-9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length F/unit 0.0 3.65e-12

LEN length of line unit no default 1.0
REL breakpoint control arbitrary unit 1 0.5
ABS breakpoint control 1 5

NOSTEPLIMIT don’t limit time-step to less
than line delay

flag not set set

NO CONTROL don’t do complex time-step
control

flag not set set

LININTERP use linear interpolation flag not set set
MIXEDINTERP use linear when quadratic

seems bad
flag not set set

COMPACTREL special reltol for history
compaction

RELTOL 1.0e-3

COMPACTABS special abstol for history
compaction

ABSTOL 1.0e-9

TRUNCNR use Newton-Raphson method
for time-step control

flag not set set

TRUNCDONTCUT don’t limit time-step to keep
impulse-response errors low

flag not set set

The following types of lines have been implemented so far:

• RLC (uniform transmission line with series loss only),

• RC (uniform RC line),

• LC (lossless transmission line),

• RG (distributed series resistance and parallel conductance only).

Any other combination will yield erroneous results and should not be tried. The length LEN
of the line must be specified. NOSTEPLIMIT is a flag that will remove the default restriction
of limiting time-steps to less than the line delay in the RLC case. NO CONTROL is a flag that
prevents the default limiting of the time-step based on convolution error criteria in the RLC and
RC cases. This speeds up simulation but may in some cases reduce the accuracy of results.
LININTERP is a flag that, when specified, will use linear interpolation instead of the default
quadratic interpolation for calculating delayed signals. MIXEDINTERP is a flag that, when spec-
ified, uses a metric for judging whether quadratic interpolation is not applicable and if so uses
linear interpolation; otherwise it uses the default quadratic interpolation. TRUNCDONTCUT is a
flag that removes the default cutting of the time-step to limit errors in the actual calculation of
impulse-response related quantities. COMPACTREL and COMPACTABS are quantities that control
the compaction of the past history of values stored for convolution. Larger values of these lower
accuracy but usually increase simulation speed. These are to be used with the TRYTOCOMPACT
option, described in the .OPTIONS section. TRUNCNR is a flag that turns on the use of Newton-
Raphson iterations to determine an appropriate time-step in the time-step control routines. The
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default is a trial and error procedure by cutting the previous time-step in half. REL and ABS are
quantities that control the setting of breakpoints.

The option most worth experimenting with for increasing the speed of simulation is REL. The
default value of 1 is usually safe from the point of view of accuracy but occasionally increases
computation time. A value greater than 2 eliminates all breakpoints and may be worth trying
depending on the nature of the rest of the circuit, keeping in mind that it might not be safe from
the viewpoint of accuracy.

Breakpoints may usually be entirely eliminated if it is expected the circuit will not display
sharp discontinuities. Values between 0 and 1 are usually not required but may be used for
setting many breakpoints.

COMPACTREL may also be experimented with when the option TRYTOCOMPACT is specified in
a .OPTIONS card. The legal range is between 0 and 1. Larger values usually decrease the
accuracy of the simulation but in some cases improve speed. If TRYTOCOMPACT is not specified
on a .OPTIONS card, history compaction is not attempted and accuracy is high.

NO CONTROL, TRUNCDONTCUT and NOSTEPLIMIT also tend to increase speed at the expense of
accuracy.

6.3 Uniform Distributed RC Lines

General form:

UXXXXXXX n1 n2 n3 mname l = l e n <n=lumps >

Examples:

U1 1 2 0 URCMOD L=50U
URC2 1 12 2 UMODL l =1MIL N=6

n1 and n2 are the two element nodes the RC line connects, while n3 is the node to which the
capacitances are connected. mname is the model name, len is the length of the RC line in
meters. lumps, if specified, is the number of lumped segments to use in modeling the RC line
(see the model description for the action taken if this parameter is omitted).

6.3.1 Uniform Distributed RC Model (URC)

The URC model is derived from a model proposed by L. Gertzberg in 1974. The model is
accomplished by a subcircuit type expansion of the URC line into a network of lumped RC
segments with internally generated nodes. The RC segments are in a geometric progression,
increasing toward the middle of the URC line, with K as a proportionality constant. The num-
ber of lumped segments used, if not specified for the URC line device, is determined by the
following formula:

N =

log
∣∣∣∣Fmax

R
L

C
L 2πL2

∣∣∣ (K−1)
K

∣∣∣2∣∣∣∣
logK

(6.1)

The URC line is made up strictly of resistor and capacitor segments unless the ISPERL parame-
ter is given a nonzero value, in which case the capacitors are replaced with reverse biased diodes
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with a zero-bias junction capacitance equivalent to the capacitance replaced, and with a satu-
ration current of ISPERL amps per meter of transmission line and an optional series resistance
equivalent to RSPERL ohms per meter.

Name Parameter Units Default Example Area
K Propagation Constant - 2.0 1.2 -

FMAX Maximum Frequency of interest Hz 1.0 G 6.5 Meg -
RPERL Resistance per unit length Ω/m 1000 10 -
CPERL Capacitance per unit length F/m 10e-15 1 p -
ISPERL Saturation Current per unit length A/m 0 - -
RSPERL Diode Resistance per unit length Ω/m 0 - -

6.4 KSPICE Lossy Transmission Lines

Unlike SPICE3, which uses the state-based approach to simulate lossy transmission lines,
KSPICE simulates lossy transmission lines and coupled multiconductor line systems using the
recursive convolution method. The impulse response of an arbitrary transfer function can be
determined by deriving a recursive convolution from the Pade approximations of the function.
NGSPICE is using this approach for simulating each transmission line’s characteristics and each
multiconductor line’s modal functions. This method of lossy transmission line simulation has
shown to give a speedup of one to two orders of magnitude over SPICE3E. Please note that the
following two models will support only transient simulation, no ac.

Additional Documentation Available:

• S. Lin and E. S. Kuh, "Pade Approximation Applied to Transient Simulation of Lossy
Coupled Transmission Lines," Proc. IEEE Multi-Chip Module Conference, 1992, pp.
52-55.

• S. Lin, M. Marek-Sadowska, and E. S. Kuh, "SWEC: A StepWise Equivalent Conduc-
tance Timing Simulator for CMOS VLSI Circuits," European Design Automation Conf.,
February 1991, pp. 142-148.

• S. Lin and E. S. Kuh, "Transient Simulation of Lossy Interconnect," Proc. Design Au-
tomation Conference, Anaheim, CA, June 1992, pp. 81-86.

6.4.1 Single Lossy Transmission Line (TXL)

General form:

YXXXXXXX N1 0 N2 0 mname <LEN=LENGTH>

Example:

Y1 1 0 2 0 ymod LEN=2
.MODEL ymod t x l R=12.45 L=8.972 e−9 G=0 C=0.468 e−12 l e n g t h =16

n1 and n2 are the nodes of the two ports. The optional instance parameter len is the length of
the line and may be expressed in multiples of [unit]. Typically unit is given in meters. len will
override the model parameter length for the specific instance only.
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The TXL model takes a number of parameters:

Name Parameter Units/Type Default Example
R resistance/length Ω/unit 0.0 0.2
L inductance/length H/unit 0.0 9.13e-9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length F/unit 0.0 3.65e-12

LENGTH length of line unit no default 1.0

Model parameter length must be specified as a multiple of unit. Typically unit is given in [m].
For transient simulation only.

6.4.2 Coupled Multiconductor Line (CPL)

The CPL multiconductor line model is in theory similar to the RLGC model, but without fre-
quency dependent loss (neither skin effect nor frequency-dependent dielectric loss). Up to 8
coupled lines are supported in NGSPICE.

General form:

PXXXXXXX NI1 NI2 . . . NIX GND1 NO1 NO2 . . . NOX GND2 mname <LEN=LENGTH>

Example:

P1 i n 1 i n 2 0 b1 b2 0 PLINE
. model PLINE CPL l e n g t h ={Len}
+R=1 0 1
+L={L11} {L12} {L22}
+G=0 0 0
+C={C11} {C12} {C22}
. param Len=1 Rs=0
+ C11 =9.143579E−11 C12=−9.78265E−12 C22 =9.143578E−11
+ L11 =3.83572E−7 L12 =8.26253E−8 L22 =3.83572E−7

ni1 ... nix are the nodes at port 1 with gnd1; no1 ... nox are the nodes at port 2 with gnd2.
The optional instance parameter len is the length of the line and may be expressed in multiples
of [unit]. Typically unit is given in meters. len will override the model parameter length for
the specific instance only.

The CPL model takes a number of parameters:

Name Parameter Units/Type Default Example
R resistance/length Ω/unit 0.0 0.2
L inductance/length H/unit 0.0 9.13e-9
G conductance/length mhos/unit 0.0 0.0
C capacitance/length F/unit 0.0 3.65e-12

LENGTH length of line unit no default 1.0

All RLGC parameters are given in Maxwell matrix form. For the R and G matrices the diagonal
elements must be specified, for L and C matrices the lower or upper triangular elements must
specified. The parameter LENGTH is a scalar and is mandatory. For transient simulation only.
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Diodes

7.1 Junction Diodes

General form:

DXXXXXXX n+ n− mname < a r e a = va l > <m= val > < p j = va l > < o f f > < i c =vd>
+ <temp= va l > <dtemp= va l >

Examples:

DBRIDGE 2 10 DIODE1
DCLMP 3 7 DMOD AREA=3.0 IC =0 .2

The pn junction (diode) implemented in ngspice expands the one found in SPICE3f5. Perimeter
effects and high injection level have been introduced into the original model and temperature
dependence of some parameters has been added. n+ and n- are the positive and negative nodes,
respectively. mname is the model name. Instance parameters may follow, dedicated to only
the diode described in the respective line. area is the area scale factor, which may scale
the saturation current given by the model parameters (and others, see table below). pj is the
perimeter scale factor, scaling the sidewall saturation current and it’s associated capacitance. m
is a multiplier to area and perimeter, and off indicates an (optional) starting condition on the
device for dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional)
initial condition specification using ic is intended for use with the uic option on the .tran
control line, when a transient analysis is desired starting from other than the quiescent operating
point. You should supply the initial voltage across the diode there. The (optional) temp value
is the temperature at which this device is to operate, and overrides the temperature specification
on the .option control line. The temperature of each instance can be can be specified as an
offset to the circuit temperature with the dtemp option.

7.2 Diode Model (D)

The dc characteristics of the diode are determined by the parameters is and n. An ohmic resis-
tance, rs, is included. Charge storage effects are modeled by a transit time, tt, and a nonlinear
depletion layer capacitance which is determined by the parameters cjo, vj, and m. The temper-
ature dependence of the saturation current is defined by the parameters eg, the energy and xti,
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the saturation current temperature exponent. The nominal temperature at which these parame-
ters were measured is tnom, which defaults to the circuit-wide value specified on the .options
control line. Reverse breakdown is modeled by an exponential increase in the reverse diode
current and is determined by the parameters bv and ibv (both of which are positive numbers).

Junction DC parameters

Name Parameter Units Default Example Scale factor
BV Reverse breakdown voltage V ∞ 40
IBV Current at breakdown voltage A 1.0e-3 1.0e-4
IK (IKF) Forward knee current A 1.0e-3 1.0e-6
IKR Reverse knee current A 1.0e-3 1.0e-6
IS (JS) Saturation current A 1.0e-14 1.0e-16 area
JSW Sidewall saturation current A 1.0e-14 1.0e-15 perimeter
N Emission coefficient - 1 1.5
RS Ohmic resistance Ω 0.0 100 1/area

Junction capacitance parameters

Name Parameter Units Default Example Scale factor
CJO (CJ0) Zero-bias junction bottom-wall

capacitance
F 0.0 2pF area

CJP (CJSW) Zero-bias junction sidewall
capacitance

F 0.0 .1pF perimeter

FC Coefficient for forward-bias
depletion bottom-wall capacitance
formula

- 0.5 -

FCS Coefficient for forward-bias
depletion sidewall capacitance
formula

- 0.5 -

M (MJ) Area junction grading coefficient - 0.5 0.5
MJSW Periphery junction grading

coefficient
- 0.33 0.5

VJ (PB) Junction potential V 1 0.6
PHP Periphery junction potential V 1 0.6
TT Transit-time sec 0 0.1ns
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Temperature effects

Name Parameter Units Default Example Scale factor

EG Activation energy eV 1.11
1.11 Si
0.69 Sbd
0.67 Ge

TM1 1st order tempco for MJ 1/◦C 0.0 -
TM2 2nd order tempco for MJ 1/◦C2 0.0 -
TNOM (TREF) Parameter measurement temperature ◦C 27 50
TRS1 (TRS) 1st order tempco for RS 1/◦C 0.0 -
TRS2 2nd order tempco for RS 1/◦C2 0.0 -
TM1 1st order tempco for MJ 1/◦C 0.0 -
TM2 2nd order tempco for MJ 1/◦C2 0.0 -
TTT1 1st order tempco for TT 1/◦C 0.0 -
TTT2 2nd order tempco for TT 1/◦C2 0.0 -

XTI Saturation current temperature exponent - 3.0
3.0 pn
2.0 Sbd

TLEV Diode temperature equation selector - 0
TLEVC Diode capac. temperature equation selector - 0
CTA (CTC) Area junct. cap. temperature coefficient 1/◦C 0.0 -
CTP Perimeter junct. cap. temperature coefficient 1/◦C 0.0 -
TCV Breakdown voltage temperature coefficient 1/◦C 0.0 -

Noise modeling

Name Parameter Units Default Example Scale factor
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

Diode models may be described in the input file (or an file included by .inc) according to the
following example:

General form:

. model mname t y p e ( pname1= p v a l 1 pname2= p v a l 2 . . . )

Examples:

. model DMOD D ( bf =50 i s =1e−13 vbf =50)

7.3 Diode Equations

The junction diode is the basic semiconductor device and the simplest one modeled in ngspice,
but it’s model is quite complex, even if not all the physical phenomena affecting a pn junction
are modeled. The diode is modeled in three different regions:

• Forward bias: the anode is more positive than the cathode, the diode is "on" and can
conduct large currents. To avoid convergence problems and unrealistic high current, it is
better to specify a series resistance to limit current with rs model parameter.
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• Reverse bias: the cathode is more positive than the anode and the diode is "off". A reverse
bias diode conducts a small leakage current.

• Breakdown: the breakdown region is model led only if the bv model parameter is given.
When a diode enters breakdown the current increase exponentially (remember to limit it);
bv is a positive value.

Parameters Scaling

Model parameters are scaled using the unit-less parameters area and pj and the multiplier m as
depicted below:

AREAe f f = AREA ·M

PJe f f = PJ ·M

ISe f f = IS ·AREAe f f + JSW∗PJe f f

IBVe f f = IBV ·AREAe f f

IKe f f = IK ·AREAe f f

IKRe f f = IKR ·AREAe f f

CJe f f = CJ0 ·AREAe f f

CJPe f f = CJP ·PJe f f

Diode DC, Transient and AC model equations

ID =


ISe f f (e

qVD
NkT −1)+VD ∗GMIN, if VD ≥−3NkT

q

−ISe f f [1+(3NkT
qVDe )

3]+VD ∗GMIN, if −BVe f f <VD <−3NkT
q

−ISe f f (e
−q(BVe f f +VD)

NkT )+VD ∗GMIN, if VD ≤−BVe f f

(7.1)

The breakdown region must be described with more depth since the breakdown is not modeled
in physically. As written before, the breakdown modeling is based on two model parameters:
the "nominal breakdown voltage" bv and the current at the onset of breakdown ibv. For the
diode model to be consistent, the current value cannot be arbitrary chosen, since the reverse bias
and breakdown regions must match. When the diode enters breakdown region from reverse bias,
the current is calculated using the formula1:

Ibdwn =−ISe f f (e
−qBV
NkT −1) (7.2)

The computed current is necessary to adjust the breakdown voltage making the two regions
match. The algorithm is a little bit convoluted and only a brief description is given here:

Most real diodes shows a current increase that, at high current levels, does not follow the expo-
nential relationship given above. This behavior is due to high level of carriers injected into the
junction. High injection effects (as they are called) are modeled with ik and ikr.

1if you look at the source code in file diotemp.c you will discover that the exponential relation is replaced
with a first order Taylor series expansion.
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Algorithm 7.1 Diode breakdown current calculation
if IBVe f f < Ibdwn then
IBVe f f = Ibdwn

BVe f f = BV
else
BVe f f = BV−NVt ln( IBVe f f

Ibdwn
)

IDe f f =


ID

1+
√

ID
IKe f f

, if VD ≥−3NkT
q

ID

1+
√

ID
IKRe f f

, otherwise.
(7.3)

Diode capacitance is divided into two different terms:

• Depletion capacitance

• Diffusion capacitance

Depletion capacitance is composed by two different contributes, one associated to the bottom
of the junction (bottom-wall depletion capacitance) and the other to the periphery (sidewall
depletion capacitance). The basic equations are:

CDiode =Cdi f f usion +Cdepletion

Where the depletion capacitance i defined as:

Cdepletion =Cdeplbw +Cdeplsw

The diffusion capacitance, due to the injected minority carriers is modeled with the transit time
tt:

Cdi f f usion = TT
∂ IDe f f

∂VD

The depletion capacitance is more complex to model, since the function used to approximate it
diverges when the diode voltage become greater than the junction built-in potential. To avoid
function divergence, the capacitance function is approximated with a linear extrapolation for
applied voltage greater than a fraction of the junction built-in potential.

Cdeplbw =

CJe f f · (1− VD
VJ)
−MJ, if VD < FC ·VJ

CJe f f ·
1−FC·(1+MJI)+MJ·VD

VJ
(1−FC)(1+MJ) , otherwise.

(7.4)

Cdeplsw =

CJPe f f · (1− VD
PHP)

−MJSW, if VD < FCS ·PHP

CJPe f f ·
1−FCS·(1+MJSW)+MJSW· VD

PHP
(1−FCS)(1+MJSW) , otherwise.

(7.5)



112 CHAPTER 7. DIODES

Temperature dependence

The temperature affects many of the parameters in the equations above, the following equa-
tions show how. One of the most significant parameter that varies with the temperature for a
semiconductor is the band-gap energy:

EGnom = 1.16−7.02e−4 · TNOM2

TNOM+1108.0
(7.6)

EG(T ) = 1.16−7.02e−4 · T 2

TNOM+1108.0
(7.7)

The leakage currents temperature dependence is:

IS(T ) = IS · e
log f actor

N (7.8)

JSW (T ) = JSW · e
log f actor

N (7.9)

where "logfactor" is defined:

log f actor =
EG

Vt(TNOM)
− EG

Vt(T )
+XTI · ln( T

TNOM
) (7.10)

The contact potentials (bottom-wall an sidewall) temperature dependence is:

V J(T ) = VJ · ( T
TNOM

)−Vt(T ) ·
[

3 · ln( T
TNOM

)+
EGnom

Vt(TNOM)
− EG(T)

Vt(T )

]
(7.11)

PHP(T ) = PHP · ( T
TNOM

)−Vt(T ) ·
[

3 · ln( T
TNOM

)+
EGnom

Vt(TNOM)
− EG(T)

Vt(T )

]
(7.12)

The depletion capacitances temperature dependence is:

CJ(T ) = CJ ·
[

1+MJ · (4.0e−4 · (T −TNOM)− V J(T )
VJ

+1)
]

(7.13)

CJSW (T ) = CJSW ·
[

1+MJSW · (4.0e−4 · (T −TNOM)− PHP(T )
PHP

+1)
]

(7.14)

The transit time temperature dependence is:

T T (T ) = TT · (1+TTT1 · (T −TNOM)+TTT2 · (T −TNOM)2) (7.15)

The junction grading coefficient temperature dependence is:

MJ(T ) = MJ · (1+TM1 · (T −TNOM)+TM2 · (T −TNOM)2) (7.16)

The series resistance temperature dependence is:

RS(T ) = RS · (1+TRS · (T −TNOM)+TRS2 · (T −TNOM)2) (7.17)



7.3. DIODE EQUATIONS 113

Noise model

The diode has three noise contribution, one due to the presence of the parasitic resistance rs
and the other two (shot and flicker) due to the pn junction.

The thermal noise due to the parasitic resistance is:

i2RS =
4kT ∆ f

RS
(7.18)

The shot and flicker noise contributions are:

i2d = 2qID∆ f +
KF ∗ IAF

D
f

∆ f (7.19)
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Chapter 8

BJTs

8.1 Bipolar Junction Transistors (BJTs)

General form:

QXXXXXXX nc nb ne <ns > mname < a r e a = va l > < a r e a c = va l > < a r e a b = va l >
+ <m= val > < o f f > < i c =vbe , vce > <temp= va l > <dtemp= va l >

Examples:

Q23 10 24 13 QMOD IC = 0 . 6 , 5 . 0
Q50A 11 26 4 20 MOD1

nc, nb, and ne are the collector, base, and emitter nodes, respectively. ns is the (optional)
substrate node. If unspecified, ground is used. mname is the model name, area, areab, areac
are the area factors (emitter, base and collector respectively), and off indicates an (optional)
initial condition on the device for the dc analysis. If the area factor is omitted, a value of 1.0 is
assumed.

The (optional) initial condition specification using ic=vbe,vce is intended for use with the
uic option on a .tran control line, when a transient analysis is desired starting from other
than the quiescent operating point. See the .ic control line description for a better way to set
transient initial conditions. The (optional) temp value is the temperature at which this device
is to operate, and overrides the temperature specification on the .option control line. Using
dtemp option you can specify instance’s temperature relative to the circuit temperature.

8.2 BJT Models (NPN/PNP)

Ngspice provides three BJT device models, which are selected by the .model card.

.model QMOD1 BJT level=2

This is the minimal version, further optional parameters listed in the table below may replace
the ngspice default parameters. The level keyword specifies the model to be used:

• level=1 : This is the original SPICE BJT model, and it is the default model if the level
keyword is not specified on the .model line.

115
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• level=2 : This is a modified version of the original SPICE BJT that models both vertical
and lateral devices and includes temperature corrections of collector, emitter and base
resistors.

• level=4: Advanced VBIC model (see http://www.designers-guide.org/VBIC/ for details)

The bipolar junction transistor model in ngspice is an adaptation of the integral charge control
model of Gummel and Poon. This modified Gummel-Poon model extends the original model
to include several effects at high bias levels. The model automatically simplifies to the simpler
Ebers-Moll model when certain parameters are not specified. The parameter names used in the
modified Gummel-Poon model have been chosen to be more easily understood by the program
user, and to reflect better both physical and circuit design thinking.

The dc model is defined by the parameters is, bf, nf, ise, ikf, and ne which determine
the forward current gain characteristics, is, br, nr, isc, ikr, and nc which determine the
reverse current gain characteristics, and vaf and var which determine the output conductance
for forward and reverse regions.

Level 1 model has among the standard temperature model a extension which is compatible with
most foundry provided process design kits (see parameter table below tlev).

Level 1 and 2 model includes substrate saturation current iss. Three ohmic resistances rb, rc,
and re are included, where rb can be high current dependent. Base charge storage is modeled
by forward and reverse transit times, tf and tr, the forward transit time tf being bias dependent
if desired, and nonlinear depletion layer capacitances which are determined by cje, vje, and
nje for the B-E junction, cjc, vjc, and njc for the B-C junction and cjs, vjs, and mjs for
the C-S (Collector-Substrate) junction.

Level 1 and 2 model defines a substrate capacitance that will be connected to device’s base or
collector, to model lateral or vertical devices dependent from the parameter subs. The temper-
ature dependence of the saturation currents, is and iss (for level 2 model), is determined by
the energy-gap, eg, and the saturation current temperature exponent, xti.

Additionally base current temperature dependence is modeled by the beta temperature exponent
xtb in the new model. The values specified are assumed to have been measured at the tempera-
ture tnom, which can be specified on the .options control line or overridden by a specification
on the .model line.

Level 4 model (VBIC) has the following improvements beyond the GP models: Improved Early
effect modeling, Quasi-saturation modeling, Parasitic substrate transistor modeling, Parasitic
fixed (oxide) capacitance modeling, Includes an avalanche multiplication model, Improved tem-
perature modeling, Base current is decoupled from collector current, Electrothermal modeling,
Smooth, continuous mode.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter
names used in earlier versions of SPICE2 are still accepted.

Gummel-Poon BJT Parameters (incl. model extensions)

Name Parameters Units Default Example Scale factor

http://www.designers-guide.org/VBIC/
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SUBS Substrate connection: for vertical
geometry, -1 for lateral geometry
(level 2 only).

1

IS Transport saturation current. A 1.0e-16 1.0e-15 area
ISS Reverse saturation current,

substrate-to-collector for vertical
device or substrate-to-base for
lateral (level 2 only).

A 1.0e-16 1.0e-15 area

BF Ideal maximum forward beta. - 100 100
NF Forward current emission

coefficient.
- 1.0 1

VAF (VA) Forward Early voltage. V ∞ 200
IKF Corner for forward beta current

roll-off.
A ∞ 0.01 area

NKF High current Beta rolloff exponent - 0.5 0.58
ISE B-E leakage saturation current. A 0.0 1e-13 area
NE B-E leakage emission coefficient. - 1.5 2
BR Ideal maximum reverse beta. - 1 0.1
NR Reverse current emission

coefficient.
- 1 1

VAR (VB) Reverse Early voltage. V ∞ 200
IKR Corner for reverse beta high

current roll-off.
A ∞ 0.01 area

ISC B-C leakage saturation current
(area is "areab" for vertical devices
and "areac" for lateral).

A 0.0 1e-13 area

NC B-C leakage emission coefficient. - 2 1.5
RB Zero bias base resistance. Ω 0 100 area
IRB Current where base resistance falls

halfway to its min value.
A ∞ 0.1 area

RBM Minimum base resistance at high
currents.

Ω RB 10 area

RE Emitter resistance. Ω 0 1 area
RC Collector resistance. Ω 0 10 area
CJE B-E zero-bias depletion

capacitance.
F 0 2pF area

VJE (PE) B-E built-in potential. V 0.75 0.6
MJE (ME) B-E junction exponential factor. - 0.33 0.33

TF Ideal forward transit time. sec 0 0.1ns
XTF Coefficient for bias dependence of

TF.
- 0

VTF Voltage describing VBC
dependence of TF.

V ∞

ITF High-current parameter for effect
on TF.

A 0 - area
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PTF Excess phase at freq=1.0/(TF*2PI)
Hz.

deg 0

CJC B-C zero-bias depletion
capacitance (area is "areab" for
vertical devices and "areac" for
lateral).

F 0 2pF area

VJC (PC) B-C built-in potential. V 0.75 0.5
MJC B-C junction exponential factor. - 0.33 0.5
XCJC Fraction of B-C depletion

capacitance connected to internal
base node.

- 1

TR Ideal reverse transit time. sec 0 10ns
CJS Zero-bias collector-substrate

capacitance (area is "areac" for
vertical devices and"areab" for
lateral).

F 0 2pF area

VJS (PS) Substrate junction built-in
potential.

V 0.75

MJS (MS) Substrate junction exponential
factor.

- 0 0.5

XTB Forward and reverse beta
temperature exponent.

- 0

EG Energy gap for temperature effect
on IS.

eV 1.11

XTI Temperature exponent for effect on
IS.

- 3

KF Flicker-noise coefficient. - 0
AF Flicker-noise exponent. - 1
FC Coefficient for forward-bias

depletion capacitance formula.
- 0.5 0

TNOM (TREF) Parameter measurement
temperature.

◦C 27 50

TLEV BJT temperature equation selector - 0
TLEVC BJT capac. temperature equation

selector
- 0

TRE1 1st order temperature coefficient
for RE.

1/◦C 0.0 1e-3

TRE2 2nd order temperature coefficient
for RE.

1/◦C2 0.0 1e-5

TRC1 1st order temperature coefficient
for RC .

1/◦C 0.0 1e-3

TRC2 2nd order temperature coefficient
for RC.

1/◦C2 0.0 1e-5

TRB1 1st order temperature coefficient
for RB.

1/◦C 0.0 1e-3
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TRB2 2nd order temperature coefficient
for RB.

1/◦C2 0.0 1e-5

TRBM1 1st order temperature coefficient
for RBM

1/◦C 0.0 1e-3

TRBM2 2nd order temperature coefficient
for RBM

1/◦C2 0.0 1e-5

TBF1 1st order temperature coefficient
for BF

1/◦C 0.0 1e-3

TBF2 2nd order temperature coefficient
for BF

1/◦C2 0.0 1e-5

TBR1 1st order temperature coefficient
for BR

1/◦C 0.0 1e-3

TBR2 2nd order temperature coefficient
for BR

1/◦C2 0.0 1e-5

TIKF1 1st order temperature coefficient
for IKF

1/◦C 0.0 1e-3

TIKF2 2nd order temperature coefficient
for IKF

1/◦C2 0.0 1e-5

TIKR1 1st order temperature coefficient
for IKR

1/◦C 0.0 1e-3

TIKR2 2nd order temperature coefficient
for IKR

1/◦C2 0.0 1e-5

TIRB1 1st order temperature coefficient
for IRB

1/◦C 0.0 1e-3

TIRB2 2nd order temperature coefficient
for IRB

1/◦C2 0.0 1e-5

TNC1 1st order temperature coefficient
for NC

1/◦C 0.0 1e-3

TNC2 2nd order temperature coefficient
for NC

1/◦C2 0.0 1e-5

TNE1 1st order temperature coefficient
for NE

1/◦C 0.0 1e-3

TNE2 2nd order temperature coefficient
for NE

1/◦C2 0.0 1e-5

TNF1 1st order temperature coefficient
for NF

1/◦C 0.0 1e-3

TNF2 2nd order temperature coefficient
for NF

1/◦C2 0.0 1e-5

TNR1 1st order temperature coefficient
for IKF

1/◦C 0.0 1e-3

TNR2 2nd order temperature coefficient
for IKF

1/◦C2 0.0 1e-5

TVAF1 1st order temperature coefficient
for VAF

1/◦C 0.0 1e-3

TVAF2 2nd order temperature coefficient
for VAF

1/◦C2 0.0 1e-5
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TVAR1 1st order temperature coefficient
for VAR

1/◦C 0.0 1e-3

TVAR2 2nd order temperature coefficient
for VAR

1/◦C2 0.0 1e-5

CTC 1st order temperature coefficient
for CJC

1/◦C 0.0 1e-3

CTE 1st order temperature coefficient
for CJE

1/◦C 0.0 1e-3

CTS 1st order temperature coefficient
for CJS

1/◦C 0.0 1e-3

TVJC 1st order temperature coefficient
for VJC

1/◦C2 0.0 1e-5

TVJE 1st order temperature coefficient
for VJE

1/◦C 0.0 1e-3

TITF1 1st order temperature coefficient
for ITF

1/◦C 0.0 1e-3

TITF2 2nd order temperature coefficient
for ITF

1/◦C2 0.0 1e-5

TTF1 1st order temperature coefficient
for TF

1/◦C 0.0 1e-3

TTF2 2nd order temperature coefficient
for TF

1/◦C2 0.0 1e-5

TTR1 1st order temperature coefficient
for TR

1/◦C 0.0 1e-3

TTR2 2nd order temperature coefficient
for TR

1/◦C2 0.0 1e-5

TMJE1 1st order temperature coefficient
for MJE

1/◦C 0.0 1e-3

TMJE2 2nd order temperature coefficient
for MJE

1/◦C2 0.0 1e-5

TMJC1 1st order temperature coefficient
for MJC

1/◦C 0.0 1e-3

TMJC2 2nd order temperature coefficient
for MJC

1/◦C2 0.0 1e-5
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JFETs

9.1 Junction Field-Effect Transistors (JFETs)

General form:

JXXXXXXX nd ng ns mname < area > < o f f > < i c =vds , vgs > <temp=t >

Examples:

J1 7 2 3 JM1 OFF

nd, ng, and ns are the drain, gate, and source nodes, respectively. mname is the model name,
area is the area factor, and off indicates an (optional) initial condition on the device for dc
analysis. If the area factor is omitted, a value of 1.0 is assumed. The (optional) initial condition
specification, using ic=VDS,VGS is intended for use with the uic option on the .TRAN control
line, when a transient analysis is desired starting from other than the quiescent operating point.
See the .ic control line for a better way to set initial conditions. The (optional) temp value is
the temperature at which this device is to operate, and overrides the temperature specification
on the .option control line.

9.2 JFET Models (NJF/PJF)

9.2.1 JFET level 1 model with Parker Skellern modification

The level 1 JFET model is derived from the FET model of Shichman and Hodges. The dc
characteristics are defined by the parameters VTO and BETA, which determine the variation
of drain current with gate voltage, LAMBDA, which determines the output conductance, and
IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are
included.

vgst = vgs−V TO (9.1)

βp = BETA∗ (1+LAMBDA∗ vds) (9.2)
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b f ac =
1−B

PB−V TO
(9.3)

IDrain =


vds∗GMIN, if vgst ≤ 0
βp ∗ vds∗ (vds∗ (b f ac∗ vds−B)∗ vgst ∗ (2∗B+3∗b f ac∗ (vgst− vds)))+ vds∗GMIN, if vgst ≥ vds
βp ∗ vgst2 ∗ (B+ vgst ∗b f ac)+ vds∗GMIN, if vgst < vds

(9.4)

Note that in Spice3f and later, the fitting parameter B has been added by Parker and Skellern.
For details, see [9]. If parameter B is set to 1 equation above simplifies to

IDrain =


vds∗GMIN, if vgst ≤ 0
βp ∗ vds∗ (2∗ vgst− vds)+ vds∗GMIN, if vgst ≥ vds
βp ∗ vgst2 + vds∗GMIN, if vgst < vds

(9.5)

Charge storage is modeled by nonlinear depletion layer capacitances for both gate junctions
which vary as the−1/2 power of junction voltage and are defined by the parameters CGS, CGD,
and PB.

Name Parameter Units Default Example Scaling factor
VTO Threshold voltage VT 0 V -2.0 -2.0
BETA Transconductance parameter (β ) A/V ” 1.0e-4 1.0e-3 area

LAMBDA Channel-length modulation
parameter (λ )

1/V 0 1.0e-4

RD Drain ohmic resistance Ω 0 100 area
RS Source ohmic resistance Ω 0 100 area

CGS Zero-bias G-S junction capacitance
Cgs

F 0 5pF area

CGD Zero-bias G-D junction
capacitance Cgd

F 0 1pF area

PB Gate junction potential V 1 0.6
IS Gate saturation current IS A 1.0e-14 1.0e-14 area
B Doping tail parameter - 1 1.1

KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1

NLEV Noise equation selector - 1 3
GDSNOI Channel noise coefficient for

nlev=3
1.0 2.0

FC Coefficient for forward-bias
depletion capacitance formula

0.5

TNOM Parameter measurement
temperature

◦C 27 50

TCV Threshold voltage temperature
coefficient

1/°C 0.0 0.1

BEX Mobility temperature exponent - 0.0 1.1
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Additional to the standard thermal and flicker noise model an alternative thermal channel noise
model is implemented and is selectable by setting NLEV parameter to 3. This follows in a
correct channel thermal noise in the linear region.

Snoise =
2
3
∗4∗ k ∗T ∗BETA∗V gst ∗ (1+α +α2)

1+α
∗GDSNOI (9.6)

with

α =

{
1− vds

vgs−V TO , if vgs−V TO≥ vds

0, else
(9.7)

9.2.2 JFET level 2 Parker Skellern model

The level 2 model is an improvement to level 1. Details are available from Macquarie Univer-
sity. Some important items are:

• The description maintains strict continuity in its high-order derivatives, which is essential
for prediction of distortion and intermodulation.

• Frequency dependence of output conductance and transconductance is described as a
function of bias.

• Both drain-gate and source-gate potentials modulate the pinch-off potential, which is con-
sistent with S-parameter and pulsed-bias measurements.

• Self-heating varies with frequency.

• Extreme operating regions - subthreshold, forward gate bias, controlled resistance, and
breakdown regions - are included.

• Parameters provide independent fitting to all operating regions. It is not necessary to
compromise one region in favor of another.

• Strict drain-source symmetry is maintained. The transition during drain-source potential
reversal is smooth and continuous.

The model equations are described in this pdf document and in [19].

http://www.engineering.mq.edu.au/research/groups/cnerf/psmodel/index.htm
http://www.engineering.mq.edu.au/research/groups/cnerf/psmodel/index.htm
http://www.engineering.mq.edu.au/research/groups/cnerf/psfet.pdf
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Name Description Unit Type Default
ID Device IDText Text PF1

ACGAM Capacitance modulation None 0
BETA Linear-region transconductance scale None 10−4

CGD Zero-bias gate-source capacitance Capacitance 0 F
CGS Zero-bias gate-drain capacitance Capacitance 0 F

DELTA Thermal reduction coefficient None 0 W
FC Forward bias capacitance parameter None 0.5

HFETA High-frequency VGS feedback parameter None 0
HFE1 HFGAM modulation by VGD None 0V −1

HFE2 HFGAM modulation by VGS None 0 V−1
HFGAM High-frequency VGD feedback parameter None 0

HFG1 HFGAM modulation by VSG None 0 V−1
HFG2 HFGAM modulation by VDG None 0 V−1
IBD Gate-junction breakdown current Current 0 A
IS Gate-junction saturation current Current 10−14A

LFGAM Low-frequency feedback parameter None 0
LFG1 LFGAM modulation by VSG None 0 V−1
LFG2 LFGAM modulation by VDG None 0 V−1
MVST Subthreshold modulation None 0 V−1

N Gate-junction ideality factor None 1
P Linear-region power-law exponent None 2
Q Saturated-region power-law exponent None 2

RS Source ohmic resistance Resistance 0 Ohm
RD Drain ohmic resistance Resistance 0 Ohm

TAUD Relaxation time for thermal reduction Time 0 s
TAUG Relaxation time for gamma feedback Time 0 s
VBD Gate-junction breakdown potential Voltage 1 V
VBI Gate-junction potential Voltage 1 V
VST Subthreshold potential Voltage 0 V
VTO Threshold voltage Voltage -2.0 V
XC Capacitance pinch-off reduction factor None 0
XI Saturation-knee potential factor None 1000
Z Knee transition parameter None 0.5

RG Gate ohmic resistance Resistance 0 Ohm
LG Gate inductance Inductance 0 H
LS Source inductance Inductance 0 H
LD Drain inductance Inductance 0 H

CDSS Fixed Drain-source capacitance Capacitance 0 F
AFAC Gate-width scale factor None 1

NFING Number of gate fingers scale factor None 1
TNOM Nominal Temperature (Not implemented) Temperature 300 K
TEMP Temperature Temperature 300 K
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MESFETs

10.1 MESFETs

General form:

ZXXXXXXX ND NG NS MNAME <AREA> <OFF> <IC=VDS, VGS>

Examples:

Z1 7 2 3 ZM1 OFF

10.2 MESFET Models (NMF/PMF)

10.2.1 Model by Statz e.a.

The MESFET model level 1 is derived from the GaAs FET model of Statz et al. as described in
[11]. The dc characteristics are defined by the parameters VTO, B, and BETA, which determine
the variation of drain current with gate voltage, ALPHA, which determines saturation voltage,
and LAMBDA, which determines the output conductance. The formula are given by:

Id =


B(Vgs−VT )

2

1+b(Vgs−VT )

∣∣∣∣1− ∣∣∣1−AVds
3

∣∣∣3∣∣∣∣(1+LVds) for 0 <Vds <
3
A

B(Vgs−VT )
2

1+b(Vgs−VT )
(1+LVds) for V > 3

A

(10.1)

Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total gate charge
as a function of gate-drain and gate-source voltages and is defined by the parameters cgs, cgd,
and pb.
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Name Parameter Units Default Example Area
VTO Pinch-off voltage V -2.0 -2.0
BETA Transconductance parameter A/V 2 1.0e-4 1.0e-3 *

B Doping tail extending parameter 1/V 0.3 0.3 *
ALPHA Saturation voltage parameter 1/V 2 2 *

LAMBDA Channel-length modulation parameter 1/V 0 1.0e-4
RD Drain ohmic resistance Ω 0 100 *
RS Source ohmic resistance Ω 0 100 *

CGS Zero-bias G-S junction capacitance F 0 5pF *
CGD Zero-bias G-D junction capacitance F 0 1pF *
PB Gate junction potential V 1 0.6
KF Flicker noise coefficient - 0
AF Flicker noise exponent - 1
FC Coefficient for forward-bias depletion

capacitance formula
- 0.5

Device instance:

z1 2 3 0 mesmod a r e a =1 .4

Model:

. model mesmod nmf l e v e l =1 rd =46 r s =46 v t 0 =−1.3
+ lambda =0.03 a l p h a =3 b e t a =1 .4 e−3

10.2.2 Model by Ytterdal e.a.

level 2 (and levels 3,4) Copyright 1993: T. Ytterdal, K. Lee, M. Shur and T. A. Fjeldly

to be written

M. Shur, T.A. Fjeldly, T. Ytterdal, K. Lee, "Unified GaAs MESFET Model for Circuit Simula-
tion", Int. Journal of High Speed Electronics, vol. 3, no. 2, pp. 201-233, 1992

10.2.3 hfet1

level 5

to be written

no documentation available

10.2.4 hfet2

level6

to be written

no documentation available
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MOSFETs

Ngspice supports all the original mosfet models present in SPICE3f5 and almost all the newer
ones that have been published and made open-source. Both bulk and SOI (Silicon on Insula-
tor) models are available. When compiled with the cider option, ngspice implements the four
terminals numerical model that can be used to simulate a MOSFET (please refer to numerical
modeling documentation for additional information and examples).

11.1 MOSFET devices

General form:

MXXXXXXX nd ng ns nb mname <m=val > < l =val > <w=val >
+ <ad=val > <as=val > <pd=val > <ps=val > <nrd=val >
+ <nrs=val > < o f f > < i c =vds , vgs , vbs> <temp=t >

Examples:

M1 24 2 0 20 TYPE1
M31 2 17 6 10 MOSN L=5U W=2U
M1 2 9 3 0 MOSP L=10U W=5U AD=100P AS=100P PD=40U PS=40U

Note the suffixes in the example: the suffix “u” specifies microns (1e-6 m) and “p” sq-microns
(1e-12 m2).

The instance card for MOS devices starts with the letter ’M’. nd, ng, ns, and nb are the drain,
gate, source, and bulk (substrate) nodes, respectively. mname is the model name and m is the
multiplicity parameter, which simulates “m” paralleled devices. All MOS models support the
“m” multiplier parameter. Instance parameters l and w, channel length and width respectively,
are expressed in meters. The areas of drain and source diffusions: ad and as, in squared meters
(m2).

If any of l, w, ad, or as are not specified, default values are used. The use of defaults simplifies
input file preparation, as well as the editing required if device geometries are to be changed. pd
and ps are the perimeters of the drain and source junctions, in meters. nrd and nrs designate
the equivalent number of squares of the drain and source diffusions; these values multiply the
sheet resistance rsh specified on the .model control line for an accurate representation of the
parasitic series drain and source resistance of each transistor. pd and ps default to 0.0 while nrd
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and nrs to 1.0. off indicates an (optional) initial condition on the device for dc analysis. The
(optional) initial condition specification using ic=vds,vgs,vbs is intended for use with the
uic option on the .tran control line, when a transient analysis is desired starting from other
than the quiescent operating point. See the .ic control line for a better and more convenient way
to specify transient initial conditions. The (optional) temp value is the temperature at which this
device is to operate, and overrides the temperature specification on the .option control line.

The temperature specification is ONLY valid for level 1, 2, 3, and 6 MOSFETs, not for level 4
or 5 (BSIM) devices.

BSIM3.2 version is also supporting the instance parameter delvto and mulu0 for local mis-
match and NBTI (negative bias temperature instability) modeling:

Name Parameter Units Default Example
delvto Threshold voltage shift V 0.0 0.07
mulu0 Low-field mobility multiplier (U0) - 1.0 0.9

11.2 MOSFET models (NMOS/PMOS)

MOSFET models are the central part of ngspice, probably because they are the most widely
used devices in the electronics world. Ngspice provides all the MOSFETs implemented in the
original Spice3f and adds several models developed by UC Berkeley’s Device Group and other
independent groups.

Each model is invoked with a .model card. A minimal version is:

.model MOSN NMOS level=8 version=3.3.0

The model name MOSN corresponds to the model name in the instance card (see 11.1). Pa-
rameter NMOS selects an n-channel device, PMOS would point to a p-channel transistor. The
level and version parameters select the specific model. Further model parameters are op-
tional and replace ngspice default values. Due to the large number of parameters (more than
100 for modern models), model cards may be stored in extra files and loaded into the netlist by
the .include (2.6) command. Model cards are specific for a an IC manufacturing process and
are typically provided by the IC foundry. Some generic parameter sets, not linked to a specific
process, are made available by the model developers, e.g. UC Berkeley’s Device Group for
BSIM4 and BSIMSOI.

Ngspice provides several MOSFET device models, which differ in the formulation of the I-V
characteristic, and are of varying complexity. Models available are listed in table 11.1. Current
models for IC design are BSIM3 (11.2.9, down to channel length of 0.35 µm), BSIM4 (11.2.10,
below 0.35 µm), BSIMSOI (11.2.12, silicon-on-insulator devices), HiSIM2 and HiSIM_HV
(11.2.14, surface potential models for standard and high voltage/high power MOS devices).

11.2.1 MOS Level 1

This model is also known as the “Shichman-Hodges” model. This is the first model written and
the one often described in the introductory textbooks for electronics. This model is applicable
only to long channel devices. The use of Meyer’s model for the C-V part makes it non charge
conserving.

http://www-device.eecs.berkeley.edu/bsim/
http://www-device.eecs.berkeley.edu/bsim/
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11.2.2 MOS Level 2

This model tries to overcome the limitations of the Level 1 model addressing several short-
channel effects, like velocity saturation. The implementation of this model is complicated and
this leads to many convergence problems. C-V calculations can be done with the original Meyer
model (non charge conserving).

11.2.3 MOS Level 3

This is a semi-empirical model derived from the Level 2 model. In the 80s this model has often
been used for digital design and, over the years, has proved to be robust. A discontinuity in the
model with respect to the KAPPA parameter has been detected (see [10]). The supplied fix has
been implemented in Spice3f2 and later. Since this fix may affect parameter fitting, the option
“badmos3“ may be set to use the old implementation (see the section on simulation variables
and the “.options” line). Ngspice level 3 implementation takes into account length and width
mask adjustments (xl and xw) and device width narrowing due to diffusion (wd).

11.2.4 MOS Level 6

This model is described in [2]. The model can express the current characteristics of short-
channel MOSFETs at least down to 0. 25 µm channel-length, GaAs FET, and resistance inserted
MOSFETs. The model evaluation time is about 1/3 of the evaluation time of the SPICE3 mos
level 3 model. The model also enables analytical treatments of circuits in short-channel region
and makes up for a missing link between a complicated MOSFET current characteristics and
circuit behaviors in the deep submicron region.

11.2.5 Notes on Level 1-6 models

The dc characteristics of the level 1 through level 3 MOSFETs are defined by the device param-
eters vto, kp, lambda, phi and gamma. These parameters are computed by ngspice if process
parameters (nsub, tox, ...) are given, but users specified values always override. vto is pos-
itive (negative) for enhancement mode and negative (positive) for depletion mode N-channel
(P-channel) devices.

Charge storage is modeled by three constant capacitors, cgso, cgdo, and cgbo which represent
overlap capacitances, by the nonlinear thin-oxide capacitance which is distributed among the
gate, source, drain, and bulk regions, and by the nonlinear depletion-layer capacitances for both
substrate junctions divided into bottom and periphery, which vary as the mj and mjsw power
of junction voltage respectively, and are determined by the parameters cbd, cbs, cj, cjsw, mj,
mjsw and pb.

Charge storage effects are modeled by the piecewise linear voltages-dependent capacitance
model proposed by Meyer. The thin-oxide charge-storage effects are treated slightly differ-
ent for the level 1 model. These voltage-dependent capacitances are included only if tox is
specified in the input description and they are represented using Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g. the reverse current
can be input either as is (in A) or as js (in A/m2). Whereas the first is an absolute value the
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second is multiplied by ad and as to give the reverse current of the drain and source junctions
respectively.

This methodology has been chosen since there is no sense in relating always junction charac-
teristics with ad and as entered on the device line; the areas can be defaulted. The same idea
applies also to the zero-bias junction capacitances cbd and cbs (in F) on one hand, and cj (in
F/m2) on the other.

The parasitic drain and source series resistance can be expressed as either rd and rs (in ohms)
or rsh (in ohms/sq.), the latter being multiplied by the number of squares nrd and nrs input on
the device line.

NGSPICE level 1, 2, 3 and 6 parameters

Name Parameter Units Default Example
LEVEL Model index - 1

VTO Zero-bias threshold voltage
(VT 0)

V 0.0 1.0

KP Transconductance
parameter

A/V 2 2.0e-5 3.1e-5

GAMMA Bulk threshold parameter
√

V 0.0 0.37
PHI Surface potential (U) V 0.6 0.65

LAMBDA Channel length modulation
(MOS1 and MOS2 only)

(λ )

1/V 0.0 0.02

RD Drain ohmic resistance Ω 0.0 1.0
RS Source ohmic resistance Ω 0.0 1.0

CBD Zero-bias B-D junction
capacitance

F 0.0 20fF

CBS Zero-bias B-S junction
capacitance

F 0.0 20fF

IS Bulk junction saturation
current (IS)

A 1.0e-14 1.0e-15

PB Bulk junction potential V 0.8 0.87
CGSO Gate-source overlap

capacitance per meter
channel width

F/m 0.0 4.0e-11

CGDO Gate-drain overlap
capacitance per meter

channel width

F/m 0.0 4.0e-11

CGBO Gate-bulk overlap
capacitance per meter

channel width

F/m 0.0 2.0e-11

RSH Drain and source diffusion
sheet resistance

Ω/� 0.0 10
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Name Parameter Units Default Example
CJ Zero-bias bulk junction

bottom cap. per sq-meter of
junction area

F/m2 0.0 2.0e-4

MJ Bulk junction bottom
grading coeff.

- 0.5 0.5

CJSW Zero-bias bulk junction
sidewall cap. per meter of

junction perimeter

F/m 0.0 1.0e-9

MJSW Bulk junction sidewall
grading coeff.

-
0.50 (level1)
0.33 (level2,3)

JS Bulk junction saturation
current

TOX Oxide thickness m 1.0e-7 1.0e-7
NSUB Substrate doping cm−3 0.0 4.0e15
NSS Surface state density cm−2 0.0 1.0e10
NFS Fast surface state density cm−2 0.0 1.0e10
TPG Type of gate material: +1

opp. to substrate, -1 same as
substrate, 0 Al gate

- 1.0

XJ Metallurgical junction depth m 0.0 1M
LD Lateral diffusion m 0.0 0.8M
UO Surface mobility cm2/V ·sec 600 700

UCRIT Critical field for mobility
degradation (MOS2 only)

V/cm 1.0e4 1.0e4

UEXP Critical field exponent in
mobility degradation

(MOS2 only)

- 0.0 0.1

UTRA Transverse field coeff.
(mobility) (deleted for

MOS2)

- 0.0 0.3

VMAX Maximum drift velocity of
carriers

m/s 0.0 5.0e4

NEFF Total channel-charge (fixed
and mobile) coefficient

(MOS2 only)

- 1.0 5.0

KF Flicker noise coefficient - 0.0 1.0e-26
AF Flicker noise exponent - 1.0 1.2
FC Coefficient for forward-bias

depletion capacitance
formula

- 0.5

DELTA Width effect on threshold
voltage (MOS2 and MOS3)

- 0.0 1.0

THETA Mobility modulation
(MOS3 only)

1/V 0.0 0.1

ETA Static feedback (MOS3
only)

- 0.0 1.0
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Name Parameter Units Default Example
KAPPA Saturation field factor

(MOS3 only)
- 0.2 0.5

TNOM Parameter measurement
temperature

◦C 27 50

11.2.6 BSIM Models

Ngspice implements many of the BSIM models developed by Berkeley’s BSIM group. BSIM
stands for Berkeley Short-Channel IGFET Model and groups a class of models that is continu-
ously updated. In general, all parameters of BSIM models are obtained from process character-
ization, in particular level 4 and level 5 (BSIM1 and BSIM2) parameters are can be generated
automatically. J. Pierret [4] describes a means of generating a “process” file, and the program
ngproc2mod provided with ngspice converts this file into a sequence of BSIM1 ”.model” lines
suitable for inclusion in an ngspice input file.

Parameters marked below with an * in the l/w column also have corresponding parameters with
a length and width dependency. For example, vfb is the basic parameter with units of Volts,
and lvfb and wvfb also exist and have units of Volt-meter.

The formula

P = P0 +
PL

Leffective
+

PW

Weffective
(11.1)

is used to evaluate the parameter for the actual device specified with

Leffective = Linput−DL (11.2)

Weffective =Winput−DW (11.3)

Note that unlike the other models in ngspice, the BSIM models are designed for use with a
process characterization system that provides all the parameters, thus there are no defaults for
the parameters, and leaving one out is considered an error. For an example set of parameters
and the format of a process file, see the SPICE2 implementation notes[3]. For more information
on BSIM2, see reference [5]. BSIM3 (11.2.9) and BSIM4 (11.2.10) represent state of the art
for submicron and deep submicron IC design.

11.2.7 BSIM1 model (level 4)

BSIM1 model (the first is a long series) is an empirical model. Developers placed less empha-
sis on device physics and based the model on parametrical polynomial equations to model the
various physical effects. This approach pays in terms of circuit simulation behavior but the ac-
curacy degrades in the submicron region. A known problem of this model is the negative output
conductance and the convergence problems, both related to poor behavior of the polynomial
equations.

http://www-device.eecs.berkeley.edu/bsim/
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Ngspice BSIM (level 4) parameters
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Name Parameter Units l/w
VFB Flat-band voltage V *
PHI Surface inversion potential V *
K1 Body effect coefficient

√
V *

K2 Drain/source depletion charge-sharing
coefficient

- *

ETA Zero-bias drain-induced barrier-lowering
coefficient

- *

MUZ Zero-bias mobility cm2/V ·sec

DL Shortening of channel µm
DW Narrowing of channel µm
U0 Zero-bias transverse-field mobility degradation

coefficient
1/V *

U1 Zero-bias velocity saturation coefficient µ/V *
X2MZ Sens. of mobility to substrate bias at v=0 cm2/V 2·sec *
X2E Sens. of drain-induced barrier lowering effect

to substrate bias
1/V *

X3E Sens. of drain-induced barrier lowering effect
to drain bias at Vds =Vdd

1/V *

X2U0 Sens. of transverse field mobility degradation
effect to substrate bias

1/V 2 *

X2U1 Sens. of velocity saturation effect to substrate
bias

µm/V 2 *

MUS Mobility at zero substrate bias and at Vds =Vdd cm2/V 2sec

X2MS Sens. of mobility to substrate bias at Vds =Vdd cm2/V 2sec *
X3MS Sens. of mobility to drain bias at Vds =Vdd cm2/V 2sec *
X3U1 Sens. of velocity saturation effect on drain bias

at Vds=Vdd
µm/V 2 *

TOX Gate oxide thickness µm
TEMP Temperature at which parameters were

measured

◦C

VDD Measurement bias range V
CGDO Gate-drain overlap capacitance per meter

channel width
F/m

CGSO Gate-source overlap capacitance per meter
channel width

F/m

CGBO Gate-bulk overlap capacitance per meter
channel length

F/m

XPART Gate-oxide capacitance-charge model flag -
N0 Zero-bias subthreshold slope coefficient - *
NB Sens. of subthreshold slope to substrate bias - *
ND Sens. of subthreshold slope to drain bias - *

RSH Drain and source diffusion sheet resistance Ω/�
JS Source drain junction current density A/m2

PB Built in potential of source drain junction V
MJ Grading coefficient of source drain junction -
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Name Parameter Units l/w
PBSW Built in potential of source, drain junction

sidewall
V

MJSW Grading coefficient of source drain junction
sidewall

-

CJ Source drain junction capacitance per unit area F/m2

CJSW source drain junction sidewall capacitance per
unit length

F/m

WDF Source drain junction default width m
DELL Source drain junction length reduction m

xpart = 0 selects a 40/60 drain/source charge partition in saturation, while xpart=1 selects
a 0/100 drain/source charge partition. nd, ng, and ns are the drain, gate, and source nodes,
respectively. mname is the model name, area is the area factor, and off indicates an (optional)
initial condition on the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The (optional) initial condition specification, using ic=vds,vgs is intended for use
with the uic option on the .tran control line, when a transient analysis is desired starting from
other than the quiescent operating point. See the .ic control line for a better way to set initial
conditions.

11.2.8 BSIM2 model (level 5)

This model contains many improvements over BSIM1 and is suitable for analog simulation.
Nevertheless, even BSIM2 breaks transistor operation into several distinct regions and this leads
to discontinuities in the first derivative in C-V and I-V characteristics that can cause numerical
problems during simulation.

11.2.9 BSIM3 model (levels 8, 49)

BSIM3 solves the numerical problems of previous models with the introduction of smoothing
functions. It adopts a single equation to describe device characteristics in the operating regions.
This approach eliminates the discontinuities in the I-V and C-V characteristics. The origi-
nal model, BSIM3 evolved through three versions: BSIM3v1, BSIM3v2 and BSIM3v3. Both
BSIM3v1 and BSIM3v2 had suffered from many mathematical problems and were replaced by
BSIM3v3. The latter is the only surviving release and has itself a long revision history

The following table summarizes the story of this model:

Release Date Notes Version flag
BSIM3v3.0 10/30/1995 3.0
BSIM3v3.1 12/09/1996 3.1
BSIM3v3.2 06/16/1998 Revisions available: BSIM3v3.2.2,

BSIM3v3.2.3, and BSIM3v3.2.4
3.2, 3.2.2,

3.2.3, 3.2.4
BSIM3v3.3 07/29/2005 Parallel processing with OpenMP is available

for this model.
3.3.0

BSIM3v2 and 3v3 models has proved for accurate use in 0.18 µm technologies. The model is
publicly available as source code form from University of California, Berkeley.

http://www-device.eecs.berkeley.edu/bsim/?page=BSIM3
http://www-device.eecs.berkeley.edu/bsim/Files/BSIM3/ftpv330/src/BSIM3v330.tar.Z
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A detailed description is given in the user’s manual available from here .

We recommend that you use only the most recent BSIM3 model (version 3.3.0), because it
contains corrections to all known bugs. To achieve that, change the version parameter in your
modelcard files to

VERSION = 3.3.0.

If no version number is given in the .model card, this (newest) version is selected as the default.
The older models will not be supported, they are made available for reference only.

11.2.10 BSIM4 model (levels 14, 54)

This is the newest class of the BSIM family and introduces noise modeling and extrinsic para-
sitics. BSIM4, as the extension of BSIM3 model, addresses the MOSFET physical effects into
sub-100nm regime. It is a physics-based, accurate, scalable, robust and predictive MOSFET
SPICE model for circuit simulation and CMOS technology development. It is developed by
the BSIM Research Group in the Department of Electrical Engineering and Computer Sciences
(EECS) at the University of California, Berkeley (see BSIM4 home page). BSIM4 has a long
revision history, which is summarized below.

Release Date Notes Version flag
BSIM4.0.0 03/24/2000
BSIM4.1.0 10/11/2000
BSIM4.2.0 04/06/2001
BSIM4.2.1 10/05/2001 * 4.2.1
BSIM4.3.0 05/09/2003 * 4.3.0
BSIM4.4.0 03/04/2004 * 4.4.0
BSIM4.5.0 07/29/2005 * 4.5.0
BSIM4.6.0 12/13/2006

...
BSIM4.6.5 09/09/2009 * ** 4.6.5
BSIM4.7.0 04/08/2011 * ** 4.7

*) supported in ngspice, using e.g. the version=<version flag> flag in the parameter file.

**) Parallel processing using OpenMP support is available for this model.

Details of any revision are to be found in the Berkeley user’s manuals, a pdf download of the
most recent edition is to be found here .

We recommend that you use only the most recent BSIM4 model (version 4.7.0), because it
contains corrections to all known bugs. To achieve that, change the version parameter in your
modelcard files to

VERSION = 4.7.

If no version number is given in the .model card, this (newest) version is selected as the default.
The older models will typically not be supported, they are made available for reference only.

11.2.11 EKV model

Level 44 model (EKV) is not available in the standard distribution since it is not released in
source form by the EKV group. To obtain the code please refer to the (EKV model home page,

http://www-device.eecs.berkeley.edu/bsim/Files/BSIM3/ftpv330/Mod_doc/b3v33manu.tar
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4
http://www-device.eecs.berkeley.edu/bsim/Files/BSIM4/BSIM470/BSIM470_Manual.pdf
http://ekv.epfl.ch/
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EKV group home page). A verilog-A version is available contributed by Ivan Riis Nielsen
11/2006.

11.2.12 BSIMSOI models (levels 10, 58, 55, 56, 57)

BSIMSOI is a SPICE compact model for SOI (Silicon-On-Insulator) circuit design, created by
University of California at Berkeley . This model is formulated on top of the BSIM3 frame-
work. It shares the same basic equations with the bulk model so that the physical nature and
smoothness of BSIM3v3 are retained. Four models are supported in ngspice, those based on
BSIM3 and modeling fully depleted (FD, level 55), partially depleted (PD, level 57) and both
(DD, level 56), as well as the modern BSIMSOI version 4 model (levels 10, 58). Detailed de-
scriptions are beyond the scope of this manual, but see e.g. BSIMSOIv4.4 User Manual for a
very extensive description of the recent model version. OpenMP support is available for levels
10, 58, version 4.4.

11.2.13 SOI3 model (level 60)

see literature citation [18] for a description.

11.2.14 HiSIM models of the University of Hiroshima

There are two model implementations available - see also HiSIM Research Center:

1. HiSIM2 model: Surface-Potential-Based MOSFET Model for Circuit Simulation version
2.7.0 - level 61 & 68 (see link to HiSIM2 for source code and manual).

2. HiSIM_HV model: Surface-Potential-Based HV/LD-MOSFET Model for Circuit Simu-
lation version 1.2.2 - level 62 & 73 (see link to HiSIM_HV for source code and manual).

http://www-device.eecs.berkeley.edu/bsim/?page=BSIMSOI
http://www-device.eecs.berkeley.edu/~bsim/Files/BSIMSOI/bsimsoi4p4/BSIMSOIv4.4_UsersManual.pdf
http://www.hisim.hiroshima-u.ac.jp/
http://home.hiroshima-u.ac.jp/usdl/HiSIM2/HiSIM_2.5.1_Release_20110407.zip
http://home.hiroshima-u.ac.jp/usdl/HiSIM_HV/C-Code/HiSIM_HV_1.2.2_Release_20110629.zip


Chapter 12

Mixed-Mode and Behavioral Modeling
with XSPICE

Ngspice implements XSPICE extensions for behavioral and mixed-mode (analog and digital)
modeling. In the XSPICE framework this is referred to as code level modeling. Behavioral
modeling may benefit dramatically because XSPICE offers a means to add analog functionality
programmed in C. Many examples (amplifiers, oscillators, filters ...) are presented in the follow-
ing. Even more flexibility is available because you may define your own models and use them
in addition and in combination with all the already existing ngspice functionality. Mixed mode
simulation is speeded up significantly by simulating the digital part in an event driven manner,
in that state equations use only a few allowed states and are evaluated only during switching,
and not continuously in time and signal as in a pure analog simulator.

This chapter describes the predefined models available in ngspice, stemming from the original
XSPICE simulator. The instructions for writing new code models are given in chapter 28.

To make use of the XSPICE extensions, you need to compile them in. LINUX, CYGWIN,
MINGW and other users may add the flag --enable-xspice to their ./configure command
and then recompile. The prebuilt ngspice for Windows distribution has XSPICE already en-
abled. For detailed compiling instructions see chapter 32.1.

12.1 Code Model Element & .MODEL Cards

Ngspice includes a library of predefined “Code Models” that can be placed within any circuit
description in a manner similar to that used to place standard device models. Code model
instance cards always begin with the letter “A”, and always make use of a .MODEL card to
describe the code model desired. Section 28 of this document goes into greater detail as to how
a code model similar to the predefined models may be developed, but once any model is created
and linked into the simulator it may be placed using one instance card and one .MODEL card
(note here we conform to the SPICE custom of referring to a single logical line of information
as a “card”). As an example, the following uses the predefined “gain” code model which takes
as an input some value on node 1, multiplies it by a gain of 5.0, and outputs the new value to
node 2. Note that, by convention, input ports are specified first on code models. Output ports
follow the inputs.

139
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Example:

a1 1 2 amp
.model amp gain(gain =5.0)

In this example the numerical values picked up from single-ended (i.e. ground referenced)
input node 1 and output to single-ended output node 2 will be voltages, since in the Interface
Specification File for this code model (i.e., gain), the default port type is specified as a voltage
(more on this later). However, if you didn’t know this, the following modifications to the
instance card could be used to insure it:

Example:

a1 %v(1) %v(2) amp
.model amp gain(gain =5.0)

The specification "%v" preceding the input and output node numbers of the instance card indi-
cate to the simulator that the inputs to the model should be single-ended voltage values. Other
possibilities exist, as described later.

Some of the other features of the instance and .MODEL cards are worth noting. Of particular
interest is the portion of the .MODEL card which specifies gain=5.0. This portion of the
card assigns a value to a parameter of the "gain" model. There are other parameters which can
be assigned values for this model, and in general code models will have several. In addition
to numeric values, code model parameters can take non-numeric values (such as TRUE and
FALSE), and even vector values. All of these topics will be discussed at length in the following
pages. In general, however, the instance and .MODEL cards which define a code model will
follow the abstract form described below. This form illustrates that the number of inputs and
outputs and the number of parameters which can be specified is relatively open-ended and can be
interpreted in a variety of ways (note that angle-brackets “<” and “>” enclose optional inputs):

Example:

AXXXXXXX <%v,%i,%vd ,%id ,%g,%gd ,%h,%hd, or %d>
+ <[> <~><%v,%i,%vd ,%id ,%g,%gd ,%h,%hd , or %d>
+ <NIN1 or +NIN1 -NIN1 or "null">
+ <~>...<NIN2.. <]> >
+ <%v,%i,%vd ,%id ,%g,%gd ,%h,%hd ,%d or %vnam >
+ <[> <~><%v,%i,%vd ,%id ,%g,%gd ,%h,%hd ,

or %d><NOUT1 or +NOUT1 -NOUT1 >
+ <~>...<NOUT2.. <]>>
+ MODELNAME

.MODEL MODELNAME MODELTYPE
+ <( PARAMNAME1= <[> VAL1 <VAL2 ... <]>> PARAMNAME2 ..>)>
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Square brackets ([ ]) are used to enclose vector input nodes. In addition, these brackets are used
to delineate vectors of parameters.

The literal string “null”, when included in a node list, is interpreted as no connection at that input
to the model. "Null" is not allowed as the name of a model’s input or output if the model only
has one input or one output. Also, “null” should only be used to indicate a missing connection
for a code model; use on other XSPICE component is not interpreted as a missing connection,
but will be interpreted as an actual node name.

The tilde, “~”, when prepended to a digital node name, specifies that the logical value of that
node be inverted prior to being passed to the code model. This allows for simple inversion of
input and output polarities of a digital model in order to handle logically equivalent cases and
others that frequently arise in digital system design. The following example defines a NAND
gate, one input of which is inverted:

a1 [~1 2] 3 nand1
.model nand1 d_nand (rise_delay =0.1 fall_delay =0.2)

The optional symbols %v, %i, %vd, etc. specify the type of port the simulator is to expect for
the subsequent port or port vector. The meaning of each symbol is given in Table 12.1.

The symbols described in Table 12.1 may be omitted if the default port type for the model is
desired. Note that non-default port types for multi-input or multi-output (vector) ports must be
specified by placing one of the symbols in front of EACH vector port. On the other hand, if all
ports of a vector port are to be declared as having the same non-default type, then a symbol may
be specified immediately prior to the opening bracket of the vector. The following examples
should make this clear:

Example 1: - Specifies two differential voltage connections, one
to nodes 1 & 2, and one to nodes 3 & 4.

%vd [1 2 3 4]

Example 2: - Specifies two single-ended connections to node 1 and
at node 2, and one differential connection to
nodes 3 & 4.

%v [1 2 %vd 3 4]

Example 3: - Identical to the previous example...parenthesis
are added for additional clarity.

%v [1 2 %vd(3 4)]

Example 4: - Specifies that the node numbers are to be treated in the
default fashion for the particular model.
If this model had “%v” as a default for this
port, then this notation would represent four single-ended
voltage connections.

[1 2 3 4]
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Port Type Modifiers
Modifier Interpretation

%v represents a single-ended voltage port - one node name or number is expected
for each port.

%i represents a single-ended current port - one node name or number is expected
for each port.

%g represents a single-ended voltage-input, current-output (VCCS) port - one
node name or number is expected for each port. This type of port is auto-
matically an input/output.

%h represents a single-ended current-input, voltage-output (CCVS) port - one
node name or number is expected for each port. This type of port is auto-
matically an input/output.

%d represents a digital port - one node name or number is expected for each port.
This type of port may be either an input or an output.

%vnam represents the name of a voltage source, the current through which is taken as
an input. This notation is provided primarily in order to allow models defined
using SPICE2G6 syntax to operate properly in XSPICE.

%vd represents a differential voltage port - two node names or numbers are ex-
pected for each port.

%id represents a differential current port - two node names or numbers are ex-
pected for each port.

%gd represents a differential VCCS port - two node names or numbers are expected
for each port.

%hd represents a differential CCVS port - two node names or numbers are expected
for each port.

Table 12.1: Port Type Modifiers
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The parameter names listed on the .MODEL card must be identical to those named in the code
model itself. The parameters for each predefined code model are described in detail in Sections
12.2 (analog), 12.3 (Hybrid, A/D) and 12.4 (digital) . The steps required in order to specify
parameters for user-defined models are described in Chapter 28.

The following is a list of instance card and associated .MODEL card examples showing use of
predefined models within an XSPICE deck:

a1 1 2 amp
.model amp gain(in_offset=0.1 gain=5.0 out_offset=-0.01)
a2 %i[1 2] 3 sum1
.model sum1 summer(in_offset=[0.1 -0.2] in_gain=[2.0 1.0]
+ out_gain=5.0 out_offset=-0.01)
a21 %i[1 %vd(2 5) 7 10] 3 sum2
.model sum2 summer(out_gain=10.0)
a5 1 2 limit5 .model limit5 limit(in_offset=0.1 gain=2.5
+ out_lower.limit=-5.0 out_upper_limit=5.0 limit_domain=0.10
+ fraction=FALSE)
a7 2 %id(4 7) xfer.cntl1
.model xfer_cntl1 pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)
a8 3 %gd(6 7) switch3
.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE)

12.2 Analog Models

The following analog models are supplied with XSPICE. The descriptions included consist
of the model Interface Specification File and a description of the model’s operation. This is
followed by an example of a simulator-deck placement of the model, including the .MODEL
card and the specification of all available parameters.

12.2.1 Gain

NAME_TABLE :
C_Function_Name : cm_gain
Spice_Model_Name : gain
Description : "A simple gain block"

PORT_TABLE :
Port Name: in out
Description : "input" " output "
Direction : in out
Default_Type : v v
Allowed_Types : [v,vd ,i,id ,vnam] [v,vd ,i,id]
Vector : no no
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Vector . Bounds : - -
Null. Allowed : no no

PARAMETER_TABLE :
Parameter_Name : in_offset gain out_offset
Description : "input offset " "gain" " output offset "
Data_Type : real real real
Default_Value : 0.0 1.0 0.0
Limits : - - -
Vector : no no no
Vector_Bounds : - - -
Null_Allowed : yes yes yes

Description: This function is a simple gain block with optional offsets on the input and the
output. The input offset is added to the input, the sum is then multiplied by the gain, and
the result is produced by adding the output offset. This model will operate in DC, AC,
and Transient analysis modes.

Example:

a1 1 2 amp
.model amp gain(in_offset =0.1 gain =5.0
+ out_offset = -0.01)

12.2.2 Summer

NAME_TABLE:
C_Function_Name: cm_summer
Spice_Model_Name: summer
Description: "A summer block"

PORT_TABLE:
Port Name: in out
Description: "input vector" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id ,vnam] [v,vd ,i,id]
Vector: yes no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:
Parameter_Name: in_offset in_gain
Description: "input offset vector" "input gain vector"
Data_Type: real real
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Default_Value: 0.0 1.0
Limits: - -
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes

PARAMETER_TABLE:
Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a summer block with 2-to-N input ports. Individual gains and
offsets can be applied to each input and to the output. Each input is added to its respective
offset and then multiplied by its gain. The results are then summed, multiplied by the
output gain and added to the output offset. This model will operate in DC, AC, and
Transient analysis modes.

Example usage:

a2 [1 2] 3 sum1
.model sum1 summer(in_offset =[0.1 -0.2] in_gain =[2.0 1.0]
+ out_gain =5.0 out_offset = -0.01)

12.2.3 Multiplier
NAME_TABLE:
C_Function_Name: cm_mult
Spice_Model_Name: mult
Description: "multiplier block"
PORT_TABLE:
Port_Name: in out
Description: "input vector" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset in_gain
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Description: "input offset vector" "input gain vector"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_gain out_offset
Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a multiplier block with 2-to-N input ports. Individual gains and
offsets can be applied to each input and to the output. Each input is added to its respective
offset and then multiplied by its gain. The results are multiplied along with the output
gain and are added to the output offset. This model will operate in DC, AC, and Transient
analysis modes. However, in ac analysis it is important to remember that results are
invalid unless only ONE INPUT of the multiplier is connected to a node which bears
an AC signal (this is exemplified by the use of a multiplier to perform a potentiometer
function: one input is DC, the other carries the AC signal).

Example SPICE Usage:

a3 [1 2 3] 4 sigmult
.model sigmult mult(in_offset =[0.1 0.1 -0.1]
+ in_gain =[10.0 10.0 10.0] out_gain =5.0 out_offset =0.05)

12.2.4 Divider
NAME_TABLE:
C_Function_Name: cm_divide
Spice_Model_Name: divide
Description: "divider block"
PORT_TABLE:
Port_Name: num den out
Description: "numerator" "denominator" "output"
Direction: in in out
Default_Type: v v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no no
Vector_Bounds: - - -
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Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: num_offset num_gain
Description: "numerator offset" "numerator gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: den_offset den_gain
Description: "denominator offset" "denominator gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: den_lower_limit
Description: "denominator lower limit"
Data_Type: real
Default_Value: 1.0e-10
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: den_domain
Description: "denominator smoothing domain"
Data_Type: real
Default_Value: 1.0e-10
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/absolute value switch"
Data_Type: boolean
Default_Value: false
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out_gain out_offset
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Description: "output gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a two-quadrant divider. It takes two inputs; num (numerator) and
den (denominator). Divide offsets its inputs, multiplies them by their respective gains,
divides the results, multiplies the quotient by the output gain, and offsets the result. The
denominator is limited to a value above zero via a user specified lower limit. This limit is
approached through a quadratic smoothing function, the domain of which may be spec-
ified as a fraction of the lower limit value (default), or as an absolute value. This model
will operate in DC, AC and Transient analysis modes. However, in ac analysis it is im-
portant to remember that results are invalid unless only ONE INPUT of the divider is
connected to a node which bears an AC signal (this is exemplified by the use of the di-
vider to perform a potentiometer function: one input is DC, the other carries the AC
signal).

Example SPICE Usage:
a4 1 2 4 divider
.model divider divide(num_offset=0.1 num_gain=2.5 den_offset=-0.1
+ den_gain=5.0 den_lower.limit=1e-5 den_domain=1e-6
+ fraction=FALSE out_gain=1.0 out_offset=0.0)

12.2.5 Limiter
NAME_TABLE:
C_Function_Name: cm_limit
Spice_Model_Name: limit
Description: "limit block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
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Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range
Description: "upper & lower smoothing range"
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/absolute value switch"
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Limiter is a single input, single output function similar to the Gain Block.
However, the output of the Limiter function is restricted to the range specified by the
output lower and upper limits. This model will operate in DC, AC and Transient analysis
modes. Note that the limit range is the value BELOW THE UPPER LIMIT AND ABOVE
THE LOWER LIMIT at which smoothing of the output begins. For this model, then, the
limit range represents the delta WITH RESPECT TO THE OUTPUT LEVEL at which
smoothing occurs. Thus, for an input gain of 2.0 and output limits of 1.0 and -1.0 volts,
the output will begin to smooth out at ±0.9 volts, which occurs when the input value is at
±0.4.

Example SPICE Usage:
a5 1 2 limit5
.model limit5 limit(in_offset=0.1 gain=2.5 out_lower_limit=-5.0
+ out_upper_limit=5.0 limit_range=0.10 fraction=FALSE)

12.2.6 Controlled Limiter
NAME_TABLE:
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C_Function_Name: cm_climit
Spice_Model_Name: climit
Description: "controlled limiter block"
PORT_TABLE:
Port_Name: in cntl_upper
Description: "input" "upper lim. control input"
Direction: in in
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id,vnam]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port_Name: cntl_lower out
Description: "lower limit control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: upper_delta lower_delta
Description: "output upper delta" "output lower delta"
Data_Type: real real
Default_Value: 0.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range fraction
Description: "upper & lower sm. range" "smoothing %/abs switch"
Data_Type: real boolean
Default_Value: 1.0e-6 FALSE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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Description: The Controlled Limiter is a single input, single output function similar to the Gain
Block. However, the output of the Limiter function is restricted to the range specified by
the output lower and upper limits. This model will operate in DC, AC, and Transient anal-
ysis modes. Note that the limit range is the value BELOW THE CNTL_UPPER LIMIT
AND ABOVE THE CNTL_LOWER LIMIT at which smoothing of the output begins
(minimum positive value of voltage must exist between the CNTL_UPPER input and the
CNTL_LOWER input at all times). For this model, then, the limit range represents the
delta WITH RESPECT TO THE OUTPUT LEVEL at which smoothing occurs. Thus,
for an input gain of 2.0 and output limits of 1.0 and -1.0 volts, the output will begin to
smooth out at ±0.9 volts, which occurs when the input value is at ±0.4. Note also that
the Controlled Limiter code tests the input values of cntl_lower and cntl_upper to make
sure that they are spaced far enough apart to guarantee the existence of a linear range be-
tween them. The range is calculated as the difference between (cntl_upper - upper_delta
- limit_range) and (cntl_lower + lower_delta + limit_range) and must be greater than or
equal to zero. Note that when the limit range is specified as a fractional value, the limit
range used in the above is taken as the calculated fraction of the difference between cntl
upper and cntl lower. Still, the potential exists for too great a limit range value to be
specified for proper operation, in which case the model will return an error message.

Example SPICE Usage:
a6 3 6 8 4 varlimit
.
.
.model varlimit climit(in_offset=0.1 gain=2.5 upper_delta=0.0
+ lower_delta=0.0 limit_range=0.10 fraction=FALSE)

12.2.7 PWL Controlled Source
NAME_TABLE:
C_Function_Name: cm_pwl
Spice_Model_Name: pwl
Description: "piecewise linear controlled source"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: x_array y_array
Description: "x-element array" "y-element array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes



152 CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: input_domain fraction
Description: "input sm. domain" "smoothing %/abs switch"
Data_Type: real boolean
Default_Value: 0.01 TRUE
Limits: [1e-12 0.5] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
STATIC_VAR_TABLE:
Static_Var_Name: last_x_value
Data_Type: pointer Description: "iteration holding

variable for limiting"

Description: The Piece-Wise Linear Controlled Source is a single input, single output func-
tion similar to the Gain Block. However, the output of the PWL Source is not necessarily
linear for all values of input. Instead, it follows an I/O relationship specified by you via
the x_array and y_array coordinates. This is detailed below.
The x_array and y_array values represent vectors of coordinate points on the x and y axes,
respectively. The x_array values are progressively increasing input coordinate points, and
the associated y_array values represent the outputs at those points. There may be as few
as two (x_array[n], y_array[n]) pairs specified, or as many as memory and simulation
speed allow. This permits you to very finely approximate a non-linear function by captur-
ing multiple input-output coordinate points.
Two aspects of the PWL Controlled Source warrant special attention. These are the han-
dling of endpoints and the smoothing of the described transfer function near coordinate
points.
In order to fully specify outputs for values of “in” outside of the bounds of the PWL
function (i.e., less than x_array[0] or greater than x_array[n], where n is the largest user-
specified coordinate index), the PWL Controlled Source model extends the slope found
between the lowest two coordinate pairs and the highest two coordinate pairs. This has
the effect of making the transfer function completely linear for “in” less than x_array[0]
and “in” greater than x_array[n]. It also has the potentially subtle effect of unrealistically
causing an output to reach a very large or small value for large inputs. You should thus
keep in mind that the PWL Source does not inherently provide a limiting capability.
In order to diminish the potential for non-convergence of simulations when using the
PWL block, a form of smoothing around the x_array, y_array coordinate points is neces-
sary. This is due to the iterative nature of the simulator and its reliance on smooth first
derivatives of transfer functions in order to arrive at a matrix solution. Consequently, the
“input_domain” and “fraction” parameters are included to allow you some control over
the amount and nature of the smoothing performed.
“Fraction” is a switch that is either TRUE or FALSE. When TRUE (the default setting),
the simulator assumes that the specified input domain value is to be interpreted as a frac-
tional figure. Otherwise, it is interpreted as an absolute value. Thus, if fraction=TRUE
and input_domain=0.10, The simulator assumes that the smoothing radius about each co-
ordinate point is to be set equal to 10% of the length of either the x_array segment above
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each coordinate point, or the x_array segment below each coordinate point. The specific
segment length chosen will be the smallest of these two for each coordinate point.
On the other hand, if fraction=FALSE and input=0.10, then the simulator will begin
smoothing the transfer function at 0.10 volts (or amperes) below each x_array coordi-
nate and will continue the smoothing process for another 0.10 volts (or amperes) above
each x_array coordinate point. Since the overlap of smoothing domains is not allowed,
checking is done by the model to ensure that the specified input domain value is not ex-
cessive.
One subtle consequence of the use of the fraction=TRUE feature of the PWL Controlled
Source is that, in certain cases, you may inadvertently create extreme smoothing of func-
tions by choosing inappropriate coordinate value points. This can be demonstrated by
considering a function described by three coordinate pairs, such as (-1,-1), (1,1), and
(2,1). In this case, with a 10% input_domain value specified (fraction=TRUE, input do-
main=0.10), you would expect to see rounding occur between in=0.9 and in=1.1, and
nowhere else. On the other hand, if you were to specify the same function using the
coordinate pairs (-100,-100), (1,1) and (201,1), you would find that rounding occurs be-
tween in=-19 and in=21. Clearly in the latter case the smoothing might cause an excessive
divergence from the intended linearity above and below in=1.

Example SPICE Usage:
a7 2 4 xfer_cntl1
.
.
.model xfer_cntl1 pwl(x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ input_domain=0.05 fraction=TRUE)

12.2.8 Filesource
NAME_TABLE:
C_Function_Name: cm_filesource
Spice_Model_Name: filesource
Description: "File Source"
PORT_TABLE:
Port_Name: out
Description: "output"
Direction: out
Default_Type: v
Allowed_Types: [v,vd,i,id]
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: timeoffset timescale
Description: "time offset" "timescale"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
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Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: timerelative amplstep
Description: "relative time" "step amplitude"
Data_Type: boolean boolean
Default_Value: FALSE FALSE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: amploffset amplscale
Description: "ampl offset" "amplscale"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [1 -] [1 -]
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: file
Description: "file name"
Data_Type: string
Default_Value: "filesource.txt"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The File Source is similar to the Piece-Wise Linear Source, except that the wave-
form data is read from a file instead of being taken from parameter vectors.
The file format is line oriented ASCII. # and ; are comment characters; all characters from
a comment character until the end of the line are ignored.
Each line consists of two or more real values. The first value is the time; subsequent
values correspond to the outputs. Values are separated by spaces.
Time values are absolute and must be monotonically increasing, unless timerelative is set
to TRUE, in which case the values specify the interval between two samples and must be
positive. Waveforms may be scaled and shifted in the time dimension by setting timescale
and timeoffset.
Amplitudes can also be scaled and shifted using amplscale and amploffset. Amplitudes
are normally interpolated between two samples, unless amplstep is set to TRUE.

Note: The parameter filename in file="filename" has to give an absolute path or name a
file placed in an input directory specified with the environmental variable NGSPICE_INPUT_DIR
(see 16.7).



12.2. ANALOG MODELS 155

Example SPICE Usage:
a8 %vd([1 0 2 0]) filesrc
.
.
.model filesrc filesource (file="sine.m" amploffset=[0 0] amplscale=[1 1]
+ timeoffset=0 timescale=1
+ timerelative=false amplstep=false)

Example input file:
# name: sine.m
# two output ports
# column 1: time
# columns 2, 3: values
0 0 1
3.90625e-09 0.02454122852291229 0.9996988186962042
7.8125e-09 0.04906767432741801 0.9987954562051724
1.171875e-08 0.07356456359966743 0.9972904566786902
...

12.2.9 multi_input_pwl block
NAME_TABLE:
C_Function_Name: cm_multi_input_pwl
Spice_Model_Name: multi_input_pwl
Description: "multi_input_pwl block"
PORT_TABLE:
Port_Name: in out
Description: "input array" "output"
Direction: in out
Default_Type: vd vd
Allowed_Types: [vd,id] [vd,id]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: x y
Description: "x array" "y array"
Data_Type: real real
Default_Value: 0.0 0.0
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: model
Description: "model type"
Data_Type: string
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Default_Value: "and"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: Multi-input gate voltage controlled voltage source that supports and or or gating.
The x’s and y’s represent the piecewise linear variation of output (y) as a function of
input (x). Only one input determines the state of the outputs, seleczable by the parameter
model. and: the smallest value of all the inputs is chosen as the controlling input and
determines the output value, or: the smallest value of all the inputs is chosen as the
controlling input and determines the output value.

Example SPICE Usage:
a82 [1 0 2 0 3 0] 7 0 pwlm
.
.
.model pwlm multi_input_pwl((x_array=[-2.0 -1.0 2.0 4.0 5.0]
+ y_array=[-0.2 -0.2 0.1 2.0 10.0]
+ model="and")

12.2.10 Analog Switch
NAME_TABLE:
C_Function_Name: cm_aswitch
Spice_Model_Name: aswitch
Description: "analog switch"
PORT_TABLE:
Port Name: cntl_in out
Description: "input" "resistive output"
Direction: in out
Default_Type: v gd
Allowed_Types: [v,vd,i,id] [gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_off cntl_on
Description: "control ‘off’ value" "control ‘on’ value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_off log
Description: "off resistance" "log/linear switch"
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Data_Type: real boolean
Default_Value: 1.0e12 TRUE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_on
Description: "on resistance"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Analog Switch is a resistor that varies either logarithmically or linearly be-
tween specified values of a controlling input voltage or current. Note that the input is
not internally limited. Therefore, if the controlling signal exceeds the specified OFF state
or ON state value, the resistance may become excessively large or excessively small (in
the case of logarithmic dependence), or may become negative (in the case of linear de-
pendence). For the experienced user, these excursions may prove valuable for modeling
certain devices, but in most cases you are advised to add limiting of the controlling input
if the possibility of excessive control value variation exists.

Example SPICE Usage:
a8 3 (6 7) switch3
.
.
.model switch3 aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e6
+ r_on=10.0 log=TRUE)

12.2.11 Zener Diode
NAME_TABLE:
C_Function_Name: cm_zener
Spice_Model_Name: zener
Description: "zener diode"
PORT_TABLE:
Port Name: z
Description: "zener"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
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Parameter_Name: v_breakdown i_breakdown
Description: "breakdown voltage" "breakdown current"
Data_Type: real real
Default_Value: - 2.0e-2
Limits: [1.0e-6 1.0e6] [1.0e-9 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PARAMETER_TABLE:
Parameter_Name: i_sat n_forward
Description: "saturation current" "forward emission coefficient"
Data_Type: real real
Default_Value: 1.0e-12 1.0
Limits: [1.0e-15 -] [0.1 10]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_switch
Description: "switch for on-board limiting (convergence aid)"
Data_Type: boolean
Default_Value: FALSE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: previous_voltage
Data_Type: pointer
Description: "iteration holding variable for limiting"

Description: The Zener Diode models the DC characteristics of most zeners. This model
differs from the Diode/Rectifier by providing a user-defined dynamic resistance in the
reverse breakdown region. The forward characteristic is defined by only a single point,
since most data sheets for zener diodes do not give detailed characteristics in the forward
region.
The first three parameters define the DC characteristics of the zener in the breakdown
region and are usually explicitly given on the data sheet.
The saturation current refers to the relatively constant reverse current that is produced
when the voltage across the zener is negative, but breakdown has not been reached. The
reverse leakage current determines the slight increase in reverse current as the voltage
across the zener becomes more negative. It is modeled as a resistance parallel to the
zener with value v breakdown / i rev.
Note that the limit switch parameter engages an internal limiting function for the zener.
This can, in some cases, prevent the simulator from converging to an unrealistic solution
if the voltage across or current into the device is excessive. If use of this feature fails to
yield acceptable results, the convlimit option should be tried (add the following statement
to the SPICE input deck: .options convlimit)
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Example SPICE Usage:
a9 3 4 vref10
.
.
.model vref10 zener(v_breakdown=10.0 i_breakdown=0.02
+ r_breakdown=1.0 i_rev=1e-6 i_sat=1e-12)

12.2.12 Current Limiter
NAME_TABLE:
C_Function_Name: cm_ilimit
Spice_Model_Name: ilimit
Description: "current limiter block"
PORT_TABLE:
Port Name: in pos_pwr
Description: "input" "positive power supply"
Direction: in inout
Default_Type: v g
Allowed_Types: [v,vd] [g,gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PORT_TABLE:
Port Name: neg_pwr out
Description: "negative power supply" "output"
Direction: inout inout
Default_Type: g g
Allowed_Types: [g,gd] [g,gd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: r_out_source r_out_sink
Description: "sourcing resistance" "sinking resistance"
Data_Type: real real
Default_Value: 1.0 1.0
Limits: [1.0e-9 1.0e9] [1.0e-9 1.0e9]
Vector: no no
Vector_Bounds: - -
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Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: i_limit_source
Description: "current sourcing limit"
Data_Type: real
Default_Value: -
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: i_limit_sink
Description: "current sinking limit"
Data_Type: real
Default_Value: -
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: v_pwr_range i_source_range
Description: "upper & lower power "sourcing current

supply smoothing range" smoothing range"
Data_Type: real real
Default_Value: 1.0e-6 1.0e-9
Limits: [1.0e-15 -] [1.0e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: i_sink_range
Description: "sinking current smoothing range"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: r_out_domain
Description: "internal/external voltage delta smoothing range"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Current Limiter models the behavior of an operational amplifier or compara-
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tor device at a high level of abstraction. All of its pins act as inputs; three of the four
also act as outputs. The model takes as input a voltage value from the “in” connector. It
then applies an offset and a gain, and derives from it an equivalent internal voltage (veq),
which it limits to fall between pos pwr and neg pwr. If veq is greater than the output
voltage seen on the “out” connector, a sourcing current will flow from the output pin.
Conversely, if the voltage is less than vout, a sinking current will flow into the output pin.
Depending on the polarity of the current flow, either a sourcing or a sinking resistance
value (r_out_source, r_out_sink) is applied to govern the vout/i_out relationship. The
chosen resistance will continue to control the output current until it reaches a maximum
value specified by either i_limit_source or i_limit_sink. The latter mimics the current
limiting behavior of many operational amplifier output stages.
During all operation, the output current is reflected either in the pos_pwr connector cur-
rent or the neg_pwr current, depending on the polarity of i_out. Thus, realistic power
consumption as seen in the supply rails is included in the model.
The user-specified smoothing parameters relate to model operation as follows: v_pwr_range
controls the voltage below vpos_pwr and above vneg_pwr inputs beyond which veq [=
gain * (vin + voffset)] is smoothed; i_source_range specifies the current below i_limit_source
at which smoothing begins, as well as specifying the current increment above i_out=0.0 at
which i_pos_pwr begins to transition to zero; i_sink_range serves the same purpose with
respect to i_limit_sink and i_neg_pwr that i_source_range serves for i_limit_source &
i_pos_pwr; r_out_domain specifies the incremental value above and below (veq-vout)=0.0
at which r_out will be set to r_out_source and r_out_sink, respectively. For values of
(veq-vout) less than r_out_domain and greater than -r_out_domain, r_out is interpolated
smoothly between r_out_source & r_out_sink.

Example SPICE Usage:
a10 3 10 20 4 amp3
.
.
.model amp3 ilimit(in_offset=0.0 gain=16.0 r_out_source=1.0
+ r_out_sink=1.0 i_limit_source=1e-3
+ i_limit_sink=10e-3 v_pwr_range=0.2
+ i_source_range=1e-6 i_sink_range=1e-6
+ r_out_domain=1e-6)

12.2.13 Hysteresis Block
NAME_TABLE:
C_Function_Name: cm_hyst
Spice_Model_Name: hyst
Description: "hysteresis block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
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Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"
Data_Type: real real
Default_Value: 0.1 0.0
Limits: [0.0 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_upper_limit input_domain
Description: "output upper limit" "input smoothing domain"
Data_Type: real real
Default_Value: 1.0 0.01
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/absolute value switch"
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Hysteresis block is a simple buffer stage that provides hysteresis of the output
with respect to the input. The in low and in high parameter values specify the center
voltage or current inputs about which the hysteresis effect operates. The output values
are limited to out lower limit and out upper limit. The value of “hyst” is added to the in
low and in high points in order to specify the points at which the slope of the hysteresis
function would normally change abruptly as the input transitions from a low to a high
value. Likewise, the value of “hyst” is subtracted from the in high and in low values in
order to specify the points at which the slope of the hysteresis function would normally
change abruptly as the input transitions from a high to a low value. In fact, the slope of the
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hysteresis function is never allowed to change abruptly but is smoothly varied whenever
the input domain smoothing parameter is set greater than zero.

Example SPICE Usage:
a11 1 2 schmitt1
.
.
.model schmitt1 hyst(in_low=0.7 in_high=2.4 hyst=0.5
+ out_lower_limit=0.5 out_upper_limit=3.0
+ input_domain=0.01 fraction=TRUE)

12.2.14 Differentiator
NAME_TABLE:
C_Function_Name: cm_d_dt
Spice_Model_Name: d_dt
Description: "time-derivative block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain out_offset
Description: "gain" "output offset"
Data_Type: real real
Default_Value: 1.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real
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Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Differentiator block is a simple derivative stage that approximates the time
derivative of an input signal by calculating the incremental slope of that signal since the
previous time point. The block also includes gain and output offset parameters to allow
for tailoring of the required signal, and output upper and lower limits to prevent conver-
gence errors resulting from excessively large output values. The incremental value of
output below the output upper limit and above the output lower limit at which smoothing
begins is specified via the limit range parameter. In AC analysis, the value returned is
equal to the radian frequency of analysis multiplied by the gain.
Note that since truncation error checking is not included in the d_dt block, it is not rec-
ommended that the model be used to provide an integration function through the use of
a feedback loop. Such an arrangement could produce erroneous results. Instead, you
should make use of the "integrate" model, which does include truncation error checking
for enhanced accuracy.

Example SPICE Usage:
a12 7 12 slope_gen
.
.
.model slope_gen d_dt(out_offset=0.0 gain=1.0
+ out_lower_limit=1e-12 out_upper_limit=1e12
+ limit_range=1e-9)

12.2.15 Integrator
NAME_TABLE:
C_Function_Name: cm_int
Spice_Model_Name: int
Description: "time-integration block"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
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Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_lower_limit out_upper_limit
Description: "output lower limit" "output upper limit"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: limit_range
Description: "upper & lower limit smoothing range"
Data_Type: real
Default_Value: 1.0e-6
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out_ic
Description: "output initial condition"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The Integrator block is a simple integration stage that approximates the integral
with respect to time of an input signal. The block also includes gain and input offset
parameters to allow for tailoring of the required signal, and output upper and lower limits
to prevent convergence errors resulting from excessively large output values. Note that
these limits specify integrator behavior similar to that found in an operational amplifier-
based integration stage, in that once a limit is reached, additional storage does not occur.
Thus, the input of a negative value to an integrator which is currently driving at the out
upper limit level will immediately cause a drop in the output, regardless of how long
the integrator was previously summing positive inputs. The incremental value of output
below the output upper limit and above the output lower limit at which smoothing begins
is specified via the limit range parameter. In AC analysis, the value returned is equal to
the gain divided by the radian frequency of analysis.
Note that truncation error checking is included in the “int” block. This should provide
for a more accurate simulation of the time integration function, since the model will
inherently request smaller time increments between simulation points if truncation errors
would otherwise be excessive.
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Example SPICE Usage:
a13 7 12 time_count
.
.
.model time_count int(in_offset=0.0 gain=1.0
+ out_lower_limit=-1e12 out_upper_limit=1e12
+ limit_range=1e-9 out_ic=0.0)

12.2.16 S-Domain Transfer Function
NAME_TABLE:
C_Function_Name: cm_s_xfer
Spice_Model_Name: s_xfer
Description: "s-domain transfer function"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: num_coeff
Description: "numerator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: den_coeff
Description: "denominator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
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Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: int_ic
Description: "integrator stage initial conditions"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: yes
Vector_Bounds: den_coeff
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: denormalized_freq
Description: "denorm. corner freq.(radians) for 1 rad/s coeffs"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The s-domain transfer function is a single input, single output transfer function
in the Laplace transform variable “s” that allows for flexible modulation of the frequency
domain characteristics of a signal. Ac and transient simulations are supported. The code
model may be configured to produce an arbitrary s-domain transfer function with the
following restrictions:

1. The degree of the numerator polynomial cannot exceed that
of the denominator polynomial in the variable "s".

2. The coefficients for a polynomial must be stated
explicitly. That is, if a coefficient is zero, it must be
included as an input to the num coeff or den coeff vector.

The order of the coefficient parameters is from that associated with the highest-powered term
decreasing to that of the lowest. Thus, for the coefficient parameters specified below, the equa-
tion in “s” is shown:

.model filter s_xfer(gain=0.139713 int_ic=[0 0 0]
+ num_coeff=[1.0 0.0 0.07464102]
+ den_coeff=[1.0 0.998942 0.01170077])

...specifies a transfer function of the form...

N(s) = 0.139713 · { s2+0.7464102
s2+0.998942s+0.00117077}

The s-domain transfer function includes gain and in_offset (input offset) parameters to allow
for tailoring of the required signal. There are no limits on the internal signal values or on
the output value of the s-domain transfer function, so you are cautioned to specify gain and
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coefficient values that will not cause the model to produce excessively large values. In AC
analysis, the value returned is equal to the real and imaginary components of the total s-domain
transfer function at each frequency of interest.

The denormalized_freq term allows you to specify coefficients for a normalized filter (i.e. one
in which the frequency of interest is 1 rad/s). Once these coefficients are included, specifying
the denormalized frequency value “shifts” the corner frequency to the actual one of interest. As
an example, the following transfer function describes a Chebyshev low-pass filter with a corner
(pass-band) frequency of 1 rad/s:

N(s) = 0.139713 · { 1.0
s2+1.09773s+1.10251}

In order to define an s_xfer model for the above, but with the corner frequency equal to 1500
rad/s (9425 Hz), the following instance and model lines would be needed:

a12 node1 node2 cheby1
.model cheby1 s_xfer(num_coeff=[1] den_coeff=[1 1.09773 1.10251]
+ int_ic=[0 0 0] denormalized_freq=1500)

In the above, you add the normalized coefficients and scale the filter through the use of the
denormalized freq parameter. Similar results could have been achieved by performing the de-
normalization prior to specification of the coefficients, and setting denormalized freq to the
value 1.0 (or not specifying the frequency, as the default is 1.0 rad/s) Note in the above that
frequencies are ALWAYS SPECIFIED AS RADIANS/SECOND.

Truncation error checking is included in the s-domain transfer block. This should provide for
more accurate simulations, since the model will inherently request smaller time increments
between simulation points if truncation errors would otherwise be excessive.

The int_ic parameter is an array that must be of the same size as the array of values specified
for the den_coeff parameter. Even if a 0 start value is required, you have to add the specific
int_ic vector to the set of coefficients (see the examples above and below).

Example SPICE Usage:
a14 9 22 cheby_LP_3KHz
.
.
.model cheby_LP_3KHz s_xfer(in_offset=0.0 gain=1.0 int_ic=[0 0 0]
+ num_coeff=[1.0]
+ den_coeff=[1.0 1.42562 1.51620])

12.2.17 Slew Rate Block
NAME_TABLE:
C_Function_Name: cm_slew
Spice_Model_Name: slew
Description: "A simple slew rate follower block"
PORT_TABLE:
Port Name: in out
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Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_slope
Description: "maximum rising slope value"
Data_Type: real
Default_Value: 1.0e9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fall_slope
Description: "maximum falling slope value"
Data_Type: real
Default_Value: 1.0e9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: range
Description: "smoothing range"
Data_Type: real
Default_Value: 0.1
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a simple slew rate block that limits the absolute slope of the
output with respect to time to some maximum or value. The actual slew rate effects of
over-driving an amplifier circuit can thus be accurately modeled by cascading the ampli-
fier with this model. The units used to describe the maximum rising and falling slope
values are expressed in volts or amperes per second. Thus a desired slew rate of 0.5 V/µs
will be expressed as 0.5e+6, etc.
The slew rate block will continue to raise or lower its output until the difference between
the input and the output values is zero. Thereafter, it will resume following the input sig-
nal, unless the slope again exceeds its rise or fall slope limits. The range input specifies
a smoothing region above or below the input value. Whenever the model is slewing and
the output comes to within the input + or - the range value, the partial derivative of the
output with respect to the input will begin to smoothly transition from 0.0 to 1.0. When
the model is no longer slewing (output = input), dout/din will equal 1.0.



170 CHAPTER 12. MIXED-MODE AND BEHAVIORAL MODELING WITH XSPICE

Example SPICE Usage:
a15 1 2 slew1
.model slew1 slew(rise_slope=0.5e6 fall_slope=0.5e6)

12.2.18 Inductive Coupling
NAME_TABLE:
C_Function_Name: cm_lcouple
Spice_Model_Name: lcouple
Description: "inductive coupling (for use with ’core’ model)"
PORT_TABLE:
Port_Name: l mmf_out
Description: "inductor" "mmf output (in ampere-turns)"
Direction: inout inout
Default_Type: hd hd
Allowed_Types: [h,hd] [hd]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: num_turns
Description: "number of inductor turns"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a conceptual model which is used as a building block to create a
wide variety of inductive and magnetic circuit models. This function is normally used in
conjunction with the “core” model, but can also be used with resistors, hysteresis blocks,
etc. to build up systems which mock the behavior of linear and nonlinear components.
The lcouple takes as an input (on the “l” port) a current. This current value is multiplied by
the num_turns value, N, to produce an output value (a voltage value which appears on the
mmf_out port). The mmf_out acts similar to a magnetomotive force in a magnetic circuit;
when the lcouple is connected to the “core” model, or to some other resistive device, a
current will flow. This current value (which is modulated by whatever the lcouple is
connected to) is then used by the lcouple to calculate a voltage “seen” at the “l” port. The
voltage is a function of the derivative with respect to time of the current value seen at
mmf_out.
The most common use for lcouples will be as a building block in the construction of
transformer models. To create a transformer with a single input and a single output, you
would require two lcouple models plus one “core” model. The process of building up
such a transformer is described under the description of the “core” model, below.

Example SPICE Usage:
a150 (7 0) (9 10) lcouple1
.model lcouple1 lcouple(num_turns=10.0)
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12.2.19 Magnetic Core

NAME_TABLE:
C_Function_Name: cm_core
Spice_Model_Name: core
Description: "magnetic core"
PORT_TABLE:
Port_Name: mc
Description: "magnetic core"
Direction: inout
Default_Type: gd
Allowed_Types: [g,gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: H_array B_array
Description: "magnetic field array" "flux density array"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes yes
Vector_Bounds: [2 -] [2 -]
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: area length
Description: "cross-sectional area" "core length"
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: input_domain
Description: "input sm. domain"
Data_Type: real
Default_Value: 0.01
Limits: [1e-12 0.5]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fraction
Description: "smoothing fraction/abs switch"
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
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Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: mode
Description: "mode switch (1 = pwl, 2 = hyst)"
Data_Type: int
Default_Value: 1
Limits: [1 2]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: in_low in_high
Description: "input low value" "input high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: hyst out_lower_limit
Description: "hysteresis" "output lower limit"
Data_Type: real real
Default_Value: 0.1 0.0
Limits: [0 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_upper_limit
Description: "output upper limit"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a conceptual model which is used as a building block to create
a wide variety of inductive and magnetic circuit models. This function is almost always
expected to be used in conjunction with the “lcouple” model to build up systems which
mock the behavior of linear and nonlinear magnetic components. There are two funda-
mental modes of operation for the core model. These are the pwl mode (which is the
default, and which is the most likely to be of use to you) and the hysteresis mode. These
are detailed below.

PWL Mode (mode = 1)
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The core model in PWL mode takes as input a voltage which it treats as a magnetomotive force
(mmf) value. This value is divided by the total effective length of the core to produce a value
for the Magnetic Field Intensity, H. This value of H is then used to find the corresponding Flux
Density, B, using the piecewise linear relationship described by you in the H array / B array
coordinate pairs. B is then multiplied by the cross-sectional area of the core to find the Flux
value, which is output as a current. The pertinent mathematical equations are listed below:

H = mmf =L, where L = Length

Here H, the Magnetic Field Intensity, is expressed in ampere-turns/meter.

B = f (H)

The B value is derived from a piecewise linear transfer function described to the model via
the (H_array[],B_array[]) parameter coordinate pairs. This transfer function does not include
hysteretic effects; for that, you would need to substitute a HYST model for the core.

φ = BA, where A = Area

The final current allowed to flow through the core is equal to φ . This value in turn is used by
the "lcouple" code model to obtain a value for the voltage reflected back across its terminals to
the driving electrical circuit.

The following example code shows the use of two “lcouple” models and one core model to
produce a simple primary/secondary transformer.

Example SPICE Usage:
a1 (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core
.model iron_core core (H_array = [-1000 -500 -375 -250 -188 -125 -63 0
+ 63 125 188 250 375 500 1000]
+ B_array = [-3.13e-3 -2.63e-3 -2.33e-3 -1.93e-3
+ -1.5e-3 -6.25e-4 -2.5e-4 0 2.5e-4
+ 6.25e-4 1.5e-3 1.93e-3 2.33e-3
+ 2.63e-3 3.13e-3]
+ area = 0.01 length = 0.01)
a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

HYSTERESIS Mode (mode = 2)

The core model in HYSTERESIS mode takes as input a voltage which it treats as a magnetomo-
tive force (mmf) value. This value is used as input to the equivalent of a hysteresis code model
block. The parameters defining the input low and high values, the output low and high values,
and the amount of hysteresis are as in that model. The output from this mode, as in PWL mode,
is a current value which is seen across the mc port. An example of the core model used in this
fashion is shown below:
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Example SPICE Usage:
a1 (2 0) (3 0) primary
.model primary lcouple (num_turns = 155)
a2 (3 4) iron_core
.model iron_core core (mode = 2 in_low=-7.0 in_high=7.0
+ out_lower_limit=-2.5e-4 out_upper_limit=2.5e-4
+ hyst = 2.3 )
a3 (5 0) (4 0) secondary
.model secondary lcouple (num_turns = 310)

One final note to be made about the two core model nodes is that certain parameters are avail-
able in one mode, but not in the other. In particular, the in_low, in_high, out_lower_limit,
out_upper_limit, and hysteresis parameters are not available in PWL mode. Likewise, the
H_array, B_array, area, and length values are unavailable in HYSTERESIS mode. The input
domain and fraction parameters are common to both modes (though their behavior is somewhat
different; for explanation of the input domain and fraction values for the HYSTERESIS mode,
you should refer to the hysteresis code model discussion).

12.2.20 Controlled Sine Wave Oscillator
NAME_TABLE:
C_Function_Name: cm_sine
Spice_Model_Name: sine
Description: "controlled sine wave oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
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Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: This function is a controlled sine wave oscillator with parametrizable values of
low and high peak output. It takes an input voltage or current value. This value is used as
the independent variable in the piecewise linear curve described by the coordinate points
of the cntl array and freq array pairs. From the curve, a frequency value is determined,
and the oscillator will output a sine wave at that frequency. From the above, it is easy
to see that array sizes of 2 for both the cntl array and the freq array will yield a linear
variation of the frequency with respect to the control input. Any sizes greater than 2 will
yield a piecewise linear transfer characteristic. For more detail, refer to the description of
the piecewise linear controlled source, which uses a similar method to derive an output
value given a control input.

Example SPICE Usage:
asine 1 2 in_sine
.model in_sine sine(cntl_array = [-1 0 5 6]
+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0)

12.2.21 Controlled Triangle Wave Oscillator
NAME_TABLE:
C_Function_Name: cm_triangle
Spice_Model_Name: triangle
Description: "controlled triangle wave oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
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Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: duty_cycle
Description: "rise time duty cycle"
Data_Type: real
Default_Value: 0.5
Limits: [1e-10 0.999999999]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled triangle/ramp wave oscillator with parametrizable
values of low and high peak output and rise time duty cycle. It takes an input voltage or
current value. This value is used as the independent variable in the piecewise linear curve
described by the coordinate points of the cntl_array and freq_array pairs.
From the curve, a frequency value is determined, and the oscillator will output a triangle
wave at that frequency. From the above, it is easy to see that array sizes of 2 for both the
cntl_array and the freq_array will yield a linear variation of the frequency with respect to
the control input. Any sizes greater than 2 will yield a piecewise linear transfer charac-
teristic. For more detail, refer to the description of the piecewise linear controlled source,
which uses a similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 ramp1
.model ramp1 triangle(cntl_array = [-1 0 5 6]
+ freq_array=[10 10 1000 1000] out_low = -5.0
+ out_high = 5.0 duty_cycle = 0.9)

12.2.22 Controlled Square Wave Oscillator
NAME_TABLE:
C_Function_Name: cm_square
Spice_Model_Name: square
Description: "controlled square wave oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
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PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e3
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output peak low value" "output peak high value"
Data_Type: real real
Default_Value: -1.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER.TABLE:
Parameter_Name: duty_cycle rise_time
Description: "duty cycle" "output rise time"
Data_Type: real real
Default_Value: 0.5 1.0e-9
Limits: [1e-6 0.999999] -
Vector: no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: fall_time
Description: "output fall time"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled square wave oscillator with parametrizable values
of low and high peak output, duty cycle, rise time, and fall time. It takes an input voltage
or current value. This value is used as the independent variable in the piecewise linear
curve described by the coordinate points of the cntl_array and freq_array pairs. From the
curve, a frequency value is determined, and the oscillator will output a square wave at
that frequency.
From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
freq_array will yield a linear variation of the frequency with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more
detail, refer to the description of the piecewise linear controlled source, which uses a
similar method to derive an output value given a control input.
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Example SPICE Usage:
ain 1 2 pulse1
.model pulse1 square(cntl_array = [-1 0 5 6]
+ freq_array=[10 10 1000 1000] out_low = 0.0
+ out_high = 4.5 duty_cycle = 0.2
+ rise_time = 1e-6 fall_time = 2e-6)

12.2.23 Controlled One-Shot
NAME_TABLE:
C_Function_Name: cm_oneshot
Spice_Model_Name: oneshot
Description: "controlled one-shot"
PORT_TABLE:
Port Name: clk cntl_in
Description: "clock input" "control input"
Direction: in in
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PORT_TABLE:
Port Name: clear out
Description: "clear signal" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: clk_trig retrig
Description: "clock trigger value" "retrigger switch"
Data_Type: real boolean
Default_Value: 0.5 FALSE
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no yes
PARAMETER_TABLE:
Parameter_Name: pos_edge_trig
Description: "positive/negative edge trigger switch"
Data_Type: boolean
Default_Value: TRUE
Limits: -
Vector: no
Vector_Bounds: -
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Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: cntl_array pw_array
Description: "control array" "pulse width array"
Data_Type: real real
Default_Value: 0.0 1.0e-6
Limits: - [0.00 -]
Vector: yes yes
Vector_Bounds: - cntl_array
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: out_low out_high
Description: "output low value" "output high value"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: fall_time rise_time
Description: "output fall time" "output rise time"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay
Description: "output delay from trigger"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: fall_delay
Description: "output delay from pw"
Data_Type: real
Default_Value: 1.0e-9
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: This function is a controlled oneshot with parametrizable values of low and high
peak output, input trigger value level, delay, and output rise and fall times. It takes an
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input voltage or current value. This value is used as the independent variable in the
piecewise linear curve described by the coordinate points of the cntl_array and pw_array
pairs. From the curve, a pulse width value is determined. The one-shot will output a
pulse of that width, triggered by the clock signal (rising or falling edge), delayed by the
delay value, and with specified rise and fall times. A positive slope on the clear input will
immediately terminate the pulse, which resets with its fall time.
From the above, it is easy to see that array sizes of 2 for both the cntl_array and the
pw_array will yield a linear variation of the pulse width with respect to the control input.
Any sizes greater than 2 will yield a piecewise linear transfer characteristic. For more
detail, refer to the description of the piecewise linear controlled source, which uses a
similar method to derive an output value given a control input.

Example SPICE Usage:
ain 1 2 3 4 pulse2
.model pulse2 oneshot(cntl_array = [-1 0 10 11]
+ pw_array=[1e-6 1e-6 1e-4 1e-4]
+ clk_trig = 0.9 pos_edge_trig = FALSE
+ out_low = 0.0 out_high = 4.5
+ rise_delay = 20.0-9 fall_delay = 35.0e-9)

12.2.24 Capacitance Meter
NAME_TABLE:
C_Function_Name: cm_cmeter
Spice_Model_Name: cmeter
Description: "capacitance meter"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain
Description: "gain"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The capacitance meter is a sensing device which is attached to a circuit node
and produces as an output a scaled value equal to the total capacitance seen on its input
multiplied by the gain parameter. This model is primarily intended as a building block for
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other models which must sense a capacitance value and alter their behavior based upon
it.

Example SPICE Usage:
atest1 1 2 ctest
.model ctest cmeter(gain=1.0e12)

12.2.25 Inductance Meter
NAME_TABLE:
C_Function_Name: cm_lmeter
Spice_Model_Name: lmeter
Description: "inductance meter"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain
Description: "gain"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The inductance meter is a sensing device which is attached to a circuit node
and produces as an output a scaled value equal to the total inductance seen on its input
multiplied by the gain parameter. This model is primarily intended as a building block for
other models which must sense an inductance value and alter their behavior based upon
it.

Example SPICE Usage:
atest2 1 2 ltest
.model ltest lmeter(gain=1.0e6)

12.2.26 Memristor
NAME_TABLE:
C_Function_Name: cm_memristor
Spice_Model_Name: memristor
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Description: "Memristor Interface"
PORT_TABLE:
Port_Name: memris
Description: "memristor terminals"
Direction: inout
Default_Type: gd
Allowed_Types: [gd]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: rmin rmax
Description: "minimum resistance" "maximum resistance"
Data_Type: real real
Default_Value: 10.0 10000.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rinit vt
Description: "initial resistance" "threshold"
Data_Type: real real
Default_Value: 7000.0 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: alpha beta
Description: "model parameter 1" "model parameter 2"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Description: The memristor is a two-terminal resistor with memory, whose resistance depends
on the time integral of the voltage across its terminals. rmin and rmax provide the lower
and upper limits of the resistance, rinit is its starting value (no voltage applied so far).
The voltage has to be above a threshold vt to become effective in changing the resistance.
alpha and beta are two model parameters. The memristor code model is derived from a
SPICE subcircuit published in [23].

Example SPICE Usage:
amen 1 2 memr
.model memr memristor (rmin=1k rmax=10k rinit=7k
+ alpha=0 beta=2e13 vt=1.6)
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12.3 Hybrid Models

The following hybrid models are supplied with XSPICE. The descriptions included below con-
sist of the model Interface Specification File and a description of the model’s operation. This
is followed by an example of a simulator-deck placement of the model, including the .MODEL
card and the specification of all available parameters.

A note should be made with respect to the use of hybrid models for other than simple digital-to-
analog and analog-to-digital translations. The hybrid models represented in this section address
that specific need, but in the development of user-defined nodes you may find a need to translate
not only between digital and analog nodes, but also between real and digital, real and int, etc.
In most cases such translations will not need to be as involved or as detailed as shown in the
following.

12.3.1 Digital-to-Analog Node Bridge
NAME_TABLE:
C_Function_Name: cm_dac_bridge
Spice_Model_Name: dac_bridge
Description: "digital-to-analog node bridge"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d v
Allowed_Types: [d] [v,vd,i,id,d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: out_low
Description: "0-valued analog output"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: out.high
Description: "1-valued analog output"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
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Parameter_Name: out_undef input_load
Description: "U-valued analog output" "input load (F)"
Data_Type: real real
Default_Value: 0.5 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: t_rise t_fall
Description: "rise time 0->1" "fall time 1->0"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The dac_bridge is the first of two node bridge devices designed to allow for the
ready transfer of digital information to analog values and back again. The second device is
the adc_bridge (which takes an analog value and maps it to a digital one).The dac_bridge
takes as input a digital value from a digital node. This value by definition may take on
only one of the values “0”, “1” or “U”. The dac_bridge then outputs the value “out_low”,
“out_high” or “out_undef”, or ramps linearly toward one of these “final” values from its
current analog output level. The speed at which this ramping occurs depends on the values
of “t_rise” and “t_fall”. These parameters are interpreted by the model such that the rise
or fall slope generated is always constant. Note that the dac_bridge includes test code
in its cfunc.mod file for determining the presence of the out_undef parameter. If this
parameter is not specified by you, and if out_high and out_low values are specified,
then out_undef is assigned the value of the arithmetic mean of out_high and out_low.
This simplifies coding of output buffers, where typically a logic family will include an
out_low and out_high voltage, but not an out_undef value. This model also posts an input
load value (in farads) based on the parameter input load.

Example SPICE Usage:
abridge1 [7] [2] dac1
.model dac1 dac_bridge(out_low = 0.7 out_high = 3.5 out_undef = 2.2
+ input_load = 5.0e-12 t_rise = 50e-9
+ t_fall = 20e-9)

12.3.2 Analog-to-Digital Node Bridge
NAME_TABLE:
C_Function_Name: cm_adc_bridge
Spice_Model_Name: adc_bridge
Description: "analog-to-digital node bridge"
PORT_TABLE:
Port Name: in out
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Description: "input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id,d] [d]
Vector: yes yes
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_low
Description: "maximum 0-valued analog input"
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: in_high
Description: "minimum 1-valued analog input"
Data_Type: real
Default_Value: 2.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The adc_bridge is one of two node bridge devices designed to allow for the ready
transfer of analog information to digital values and back again. The second device is the
dac_bridge (which takes a digital value and maps it to an analog one). The adc_bridge
takes as input an analog value from an analog node. This value by definition may be
in the form of a voltage, or a current. If the input value is less than or equal to in_low,
then a digital output value of “0” is generated. If the input is greater than or equal to
in_high, a digital output value of “1” is generated. If neither of these is true, then a digital
“UNKNOWN” value is output. Note that unlike the case of the dac_bridge, no ramping
time or delay is associated with the adc_bridge. Rather, the continuous ramping of the
input value provides for any associated delays in the digitized signal.

Example SPICE Usage:
abridge2 [1] [8] adc_buff
.model adc_buff adc_bridge(in_low = 0.3 in_high = 3.5)
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12.3.3 Controlled Digital Oscillator
NAME_TABLE:
C_Function_Name: cm_d_osc
Spice_Model_Name: d_osc
Description: "controlled digital oscillator"
PORT_TABLE:
Port Name: cntl_in out
Description: "control input" "output"
Direction: in out
Default_Type: v d
Allowed_Types: [v,vd,i,id] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: cntl_array freq_array
Description: "control array" "frequency array"
Data_Type: real real
Default_Value: 0.0 1.0e6
Limits: - [0 -]
Vector: yes yes
Vector_Bounds: [2 -] cntl_array
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: duty_cycle init_phase
Description: "duty cycle" "initial phase of output"
Data_Type: real real
Default_Value: 0.5 0
Limits: [1e-6 0.999999] [-180.0 +360.0]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1e-9 1e-9
Limits: [0 -] [0 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital oscillator is a hybrid model which accepts as input a voltage or cur-
rent. This input is compared to the voltage-to-frequency transfer characteristic specified
by the cntl_array/freq_array coordinate pairs, and a frequency is obtained which repre-
sents a linear interpolation or extrapolation based on those pairs. A digital time-varying
signal is then produced with this fundamental frequency.
The output waveform, which is the equivalent of a digital clock signal, has rise and fall
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delays which can be specified independently. In addition, the duty cycle and the phase of
the waveform are also variable and can be set by you.

Example SPICE Usage:
a5 1 8 var_clock
.model var_clock d_osc(cntl_array = [-2 -1 1 2]
+ freq_array = [1e3 1e3 10e3 10e3]
+ duty_cycle = 0.4 init_phase = 180.0
+ rise_delay = 10e-9 fall_delay=8e-9)

12.3.4 Node bridge from digital to real with enable
NAME_TABLE:
Spice_Model_Name: d_to_real
C_Function_Name: ucm_d_to_real
Description: "Node bridge from digital to real with enable"
PORT_TABLE:
Port_Name: in enable out
Description: "input" "enable" "output"
Direction: in in out
Default_Type: d d real
Allowed_Types: [d] [d] [real]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no yes no
PARAMETER_TABLE:
Parameter_Name: zero one delay
Description: "value for 0" "value for 1" "delay"
Data_Type: real real real
Default_Value: 0.0 1.0 1e-9
Limits: - - [1e-15 -]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

12.3.5 A Z**-1 block working on real data
NAME_TABLE:
Spice_Model_Name: real_delay
C_Function_Name: ucm_real_delay
Description: "A Z ** -1 block working on real data"
PORT_TABLE:
Port_Name: in clk out
Description: "input" "clock" "output"
Direction: in in out
Default_Type: real d real
Allowed_Types: [real] [d] [real]
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Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: delay
Description: "delay from clk to out"
Data_Type: real
Default_Value: 1e-9
Limits: [1e-15 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes

12.3.6 A gain block for event-driven real data

NAME_TABLE:
Spice_Model_Name: real_gain
C_Function_Name: ucm_real_gain
Description: "A gain block for event-driven real data"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: real real
Allowed_Types: [real] [real]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain out_offset
Description: "input offset" "gain" "output offset"
Data_Type: real real real
Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes
PARAMETER_TABLE:
Parameter_Name: delay ic
Description: "delay" "initial condition"
Data_Type: real real
Default_Value: 1.0e-9 0.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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12.3.7 Node bridge from real to analog voltage
NAME_TABLE:
Spice_Model_Name: real_to_v
C_Function_Name: ucm_real_to_v
Description: "Node bridge from real to analog voltage"
PORT_TABLE:
Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: real v
Allowed_Types: [real] [v, vd, i, id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: gain transition_time
Description: "gain" "output transition time"
Data_Type: real real
Default_Value: 1.0 1e-9
Limits: - [1e-15 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

12.4 Digital Models

The following digital models are supplied with XSPICE. The descriptions included below con-
sist of an example model Interface Specification File and a description of the model’s opera-
tion. This is followed by an example of a simulator-deck placement of the model, including the
.MODEL card and the specification of all available parameters. Note that these models have
not been finalized at this time.

Some information common to all digital models and/or digital nodes is included here. The
following are general rules which should make working with digital nodes and models more
straightforward:

1. All digital nodes are initialized to ZERO at the start of a simulation (i.e., when INIT=TRUE).
This means that a model need not post an explicit value to an output node upon initial-
ization if its output would normally be a ZERO (although posting such would certainly
cause no harm).

12.4.1 Buffer
NAME_TABLE:
C_Function_Name: cm_d_buffer
Spice_Model_Name: d_buffer
Description: "digital one-bit-wide buffer"
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PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The buffer is a single-input, single-output digital buffer which produces as output
a time-delayed copy of its input. The delays associated with an output rise and those as-
sociated with an output fall may be different. The model also posts an input load value (in
farads) based on the parameter input load. The output of this model does NOT, however,
respond to the total loading it sees on its output; it will always drive the output strongly
with the specified delays.

Example SPICE Usage:
a6 1 8 buff1
.model buff1 d_buffer(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.2 Inverter
NAME_TABLE:
C_Function_Name: cm_d_inverter
Spice_Model_Name: d_inverter
Description: "digital one-bit-wide inverter"
PORT_TABLE:
Port Name: in out
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Description: "input" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The inverter is a single-input, single-output digital inverter which produces as
output an inverted, time-delayed copy of its input. The delays associated with an output
rise and those associated with an output fall may be specified independently. The model
also posts an input load value (in farads) based on the parameter input load. The output
of this model does NOT, however, respond to the total loading it sees on its output; it will
always drive the output strongly with the specified delays.

Example SPICE Usage:
a6 1 8 inv1
.model inv1 d_inverter(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.3 And
NAME_TABLE:
C_Function_Name: cm_d_and
Spice_Model_Name: d_and
Description: "digital ‘and’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
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Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital ‘and’ gate is an n-input, single-output ‘and’ gate which produces an
active “1” value if, and only if, all of its inputs are also “1” values. If ANY of the inputs is
a “0”, the output will also be a “0”; if neither of these conditions holds, the output will be
unknown. The delays associated with an output rise and those associated with an output
fall may be specified independently. The model also posts an input load value (in farads)
based on the parameter input load. The output of this model does NOT, however, respond
to the total loading it sees on its output; it will always drive the output strongly with the
specified delays.

Example SPICE Usage:
a6 [1 2] 8 and1
.model and1 d_and(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.4 Nand
NAME_TABLE:
C_Function_Name: cm_d_nand
Spice_Model_Name: d_nand
Description: "digital ‘nand’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
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Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital ‘nand’ gate is an n-input, single-output ‘nand’ gate which produces
an active “0” value if and only if all of its inputs are “1” values. If ANY of the inputs
is a “0”, the output will be a “1”; if neither of these conditions holds, the output will be
unknown. The delays associated with an output rise and those associated with an output
fall may be specified independently. The model also posts an input load value (in farads)
based on the parameter input load. The output of this model does NOT, however, respond
to the total loading it sees on its output; it will always drive the output strongly with the
specified delays.

Example SPICE Usage:
a6 [1 2 3] 8 nand1
.model nand1 d_nand(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.5 Or
NAME_TABLE:
C_Function_Name: cm_d_or
Spice_Model_Name: d_or
Description: "digital ‘or’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
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Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital ‘or’ gate is an n-input, single-output ‘or’ gate which produces an
active “1” value if at least one of its inputs is a “1” value. The gate produces a “0” value
if all inputs are “0”; if neither of these two conditions holds, the output is unknown.
The delays associated with an output rise and those associated with an output fall may be
specified independently. The model also posts an input load value (in farads) based on the
parameter input load. The output of this model does NOT, however, respond to the total
loading it sees on its output; it will always drive the output strongly with the specified
delays.

Example SPICE Usage:
a6 [1 2 3] 8 or1
.model or1 d_or(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.6 Nor
NAME_TABLE:
C_Function_Name: cm_d_nor
Spice_Model_Name: d_nor
Description: "digital ‘nor’ gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
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Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital ‘nor’ gate is an n-input, single-output ‘nor’ gate which produces an
active “0” value if at least one of its inputs is a “1” value. The gate produces a “0” value
if all inputs are “0”; if neither of these two conditions holds, the output is unknown.
The delays associated with an output rise and those associated with an output fall may be
specified independently. The model also posts an input load value (in farads) based on the
parameter input load. The output of this model does NOT, however, respond to the total
loading it sees on its output; it will always drive the output strongly with the specified
delays.

Example SPICE Usage:
anor12 [1 2 3 4] 8 nor12
.model nor12 d_or(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.7 Xor
NAME_TABLE:
C_Function_Name: cm_d_xor
Spice_Model_Name: d_xor
Description: "digital exclusive-or gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
Direction: in out
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Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital ‘xor’ gate is an n-input, single-output ‘xor’ gate which produces an
active “1” value if an odd number of its inputs are also “1” values. The delays associated
with an output rise and those associated with an output fall may be specified indepen-
dently.
The model also posts an input load value (in farads) based on the parameter input load.
The output of this model does NOT, however, respond to the total loading it sees on its
output; it will always drive the output strongly with the specified delays. Note also that
to maintain the technology-independence of the model, any UNKNOWN input, or any
floating input causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xor3
.model xor3 d_xor(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.8 Xnor
NAME_TABLE:
C_Function_Name: cm_d_xnor
Spice_Model_Name: d_xnor
Description: "digital exclusive-nor gate"
PORT_TABLE:
Port Name: in out
Description: "input" "output"
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Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [2 -] -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital ‘xnor’ gate is an n-input, single-output ‘xnor’ gate which produces an
active “0” value if an odd number of its inputs are also “1” values. It produces a “1” output
when an even number of “1” values occurs on its inputs. The delays associated with
an output rise and those associated with an output fall may be specified independently.
The model also posts an input load value (in farads) based on the parameter input load.
The output of this model does NOT, however, respond to the total loading it sees on its
output; it will always drive the output strongly with the specified delays. Note also that
to maintain the technology-independence of the model, any UNKNOWN input, or any
floating input causes the output to also go UNKNOWN.

Example SPICE Usage:
a9 [1 2] 8 xnor3
.model xnor3 d_xnor(rise_delay = 0.5e-9 fall_delay = 0.3e-9
+ input_load = 0.5e-12)

12.4.9 Tristate
NAME_TABLE:
C_Function_Name: cm_d_tristate
Spice_Model_Name: d_tristate
Description: "digital tristate buffer"
PORT_TABLE:
Port Name: in enable out
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Description: "input" "enable" "output"
Direction: in in out
Default_Type: d d d
Allowed_Types: [d] [d] [d]
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: no no no
PARAMETER_TABLE:
Parameter_Name: delay
Description: "delay"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_load
Description: "enable load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital tristate is a simple tristate gate which can be configured to allow for
open-collector behavior, as well as standard tristate behavior. The state seen on the input
line is reflected in the output. The state seen on the enable line determines the strength of
the output. Thus, a ONE forces the output to its state with a STRONG strength. A ZERO
forces the output to go to a HI_IMPEDANCE strength. The delays associated with an
output state or strength change cannot be specified independently, nor may they be spec-
ified independently for rise or fall conditions; other gate models may be used to provide
such delays if needed. The model posts input and enable load values (in farads) based
on the parameters input load and enable.The output of this model does NOT, however,
respond to the total loading it sees on its output; it will always drive the output with the
specified delay. Note also that to maintain the technology-independence of the model,
any UNKNOWN input, or any floating input causes the output to also go UNKNOWN.
Likewise, any UNKNOWN input on the enable line causes the output to go to an UNDE-
TERMINED strength value.



12.4. DIGITAL MODELS 199

Example SPICE Usage:
a9 1 2 8 tri7
.model tri7 d_tristate(delay = 0.5e-9 input_load = 0.5e-12
+ enable_load = 0.5e-12)

12.4.10 Pullup
NAME_TABLE:
C_Function_Name: cm_d_pullup
Spice_Model_Name: d_pullup
Description: "digital pullup resistor"
PORT_TABLE:
Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital pullup resistor is a device which emulates the behavior of an analog
resistance value tied to a high voltage level. The pullup may be used in conjunction
with tristate buffers to provide open-collector wired “or” constructs, or any other logical
constructs which rely on a resistive pullup common to many tristated output devices. The
model posts an input load value (in farads) based on the parameters “load”.

Example SPICE Usage:
a2 9 pullup1
.model pullup1 d_pullup(load = 20.0e-12)

12.4.11 Pulldown
NAME_TABLE:
C_Function_Name: cm_d_pulldown
Spice_Model_Name: d_pulldown
Description: "digital pulldown resistor"
PORT_TABLE:
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Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: load
Description: "load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital pulldown resistor is a device which emulates the behavior of an analog
resistance value tied to a low voltage level. The pulldown may be used in conjunction
with tristate buffers to provide open-collector wired “or” constructs, or any other logical
constructs which rely on a resistive pulldown common to many tristated output devices.
The model posts an input load value (in farads) based on the parameters “load”.

Example SPICE Usage:
a4 9 pulldown1
.model pulldown1 d_pulldown(load = 20.0e-12)

12.4.12 D Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_dff
Spice_Model_Name: d_dff
Description: "digital d-type flip flop"
PORT_TABLE:
Port Name: data clk
Description: "input data" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: set reset
Description: "asynch. set" "asynch. reset"
Direction: in in
Default_Type: d d
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Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: data_load clk_load
Description: "data load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector.Bounds: - -
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Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital d-type flip flop is a one-bit, edge-triggered storage element which will
store data whenever the clk input line transitions from low to high (ZERO to ONE). In
addition, asynchronous set and reset signals exist, and each of the three methods of chang-
ing the stored output of the d_dff have separate load values and delays associated with
them. Additionally, you may specify separate rise and fall delay values that are added to
those specified for the input lines; these allow for more faithful reproduction of the output
characteristics of different IC fabrication technologies.
Note that any UNKNOWN input on the set or reset lines immediately results in an UN-
KNOWN output.

Example SPICE Usage:
a7 1 2 3 4 5 6 flop1
.model flop1 d_dff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

12.4.13 JK Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_jkff
Spice_Model_Name: d_jkff
Description: "digital jk-type flip flop"
PORT_TABLE:
Port Name: j k
Description: "j input" "k input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: clk
Description: "clock"
Direction: in
Default_Type: d
Allowed_Types: [d]
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Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port Name: set reset
Description: "asynchronous set" "asynchronous reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: jk_load clk_load
Description: "j,k load values (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
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PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital jk-type flip flop is a one-bit, edge-triggered storage element which
will store data whenever the clk input line transitions from low to high (ZERO to ONE).
In addition, asynchronous set and reset signals exist, and each of the three methods of
changing the stored output of the d_jkff have separate load values and delays associated
with them. Additionally, you may specify separate rise and fall delay values that are
added to those specified for the input lines; these allow for more faithful reproduction of
the output characteristics of different IC fabrication technologies.
Note that any UNKNOWN inputs other than j or k cause the output to go UNKNOWN
automatically.

Example SPICE Usage:
a8 1 2 3 4 5 6 7 flop2
.model flop2 d_jkff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)

12.4.14 Toggle Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_tff
Spice_Model_Name: d_tff
Description: "digital toggle flip flop"
PORT_TABLE:
Port Name: t clk
Description: "toggle input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
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Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT.TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: t_load clk_load
Description: "toggle load value (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
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Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default.Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital toggle-type flip flop is a one-bit, edge-triggered storage element which
will toggle its current state whenever the clk input line transitions from low to high (ZERO
to ONE). In addition, asynchronous set and reset signals exist, and each of the three meth-
ods of changing the stored output of the d_tff have separate load values and delays asso-
ciated with them. Additionally, you may specify separate rise and fall delay values that
are added to those specified for the input lines; these allow for more faithful reproduction
of the output characteristics of different IC fabrication technologies.
Note that any UNKNOWN inputs other than t immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:
a8 2 12 4 5 6 3 flop3
.model flop3 d_tff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9 t_load = 0.2e-12)

12.4.15 Set-Reset Flip Flop
NAME_TABLE:
C_Function_Name: cm_d_srff
Spice_Model_Name: d_srff
Description: "digital set-reset flip flop"
PORT_TABLE:
Port Name: s r
Description: "set input" "reset input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
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Null_Allowed: no no
PORT_TABLE:
Port Name: clk
Description: "clock"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port Name: set reset
Description: "asynchronous set" "asynchronous reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: clk_delay set_delay
Description: "delay from clk" "delay from set"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from reset" "output initial state"
Data_Type: real int
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] [0 2]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: sr_load clk_load
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Description: "set/reset loads (F)" "clk load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital sr-type flip flop is a one-bit, edge-triggered storage element which
will store data whenever the clk input line transitions from low to high (ZERO to ONE).
The value stored (i.e., the “out” value) will depend on the s and r input pin values, and
will be:

out=ONE if s=ONE and r=ZERO;
out=ZERO if s=ZERO and r=ONE;
out=previous value if s=ZERO and r=ZERO;
out=UNKNOWN if s=ONE and r=ONE;

In addition, asynchronous set and reset signals exist, and each of the three methods of changing
the stored output of the d_srff have separate load values and delays associated with them. You
may also specify separate rise and fall delay values that are added to those specified for the
input lines; these allow for more faithful reproduction of the output characteristics of different
IC fabrication technologies.

Note that any UNKNOWN inputs other than s and r immediately cause the output to go UN-
KNOWN.

Example SPICE Usage:

a8 2 12 4 5 6 3 14 flop7
.model flop7 d_srff(clk_delay = 13.0e-9 set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2 rise_delay = 10.0e-9
+ fall_delay = 3e-9)
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12.4.16 D Latch

NAME_TABLE:
C_Function_Name: cm_d_dlatch
Spice_Model_Name: d_dlatch
Description: "digital d-type latch"
PORT_TABLE:
Port Name: data enable
Description: "input data" "enable input"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PORT_TABLE:
Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverter data output"
Direction: out out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: data_delay
Description: "delay from data"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_delay set_delay
Description: "delay from enable" "delay from SET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
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Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from RESET" "output initial state"
Data_Type: real boolean
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: data_load enable_load
Description: "data load (F)" "enable load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital d-type latch is a one-bit, level-sensitive storage element which will
output the value on the data line whenever the enable input line is high (ONE). The
value on the data line is stored (i.e., held on the out line) whenever the enable line is low
(ZERO).
In addition, asynchronous set and reset signals exist, and each of the four methods of
changing the stored output of the d_dlatch (i.e., data changing with enable=ONE, enable
changing to ONE from ZERO with a new value on data, raising set and raising reset) have
separate delays associated with them. You may also specify separate rise and fall delay
values that are added to those specified for the input lines; these allow for more faithful
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reproduction of the output characteristics of different IC fabrication technologies.
Note that any UNKNOWN inputs other than on the data line when enable=ZERO imme-
diately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 4 5 6 3 14 latch1
.model latch1 d_dlatch(data_delay = 13.0e-9 enable_delay = 22.0e-9
+ set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2
+ rise_delay = 10.0e-9 fall_delay = 3e-9)

12.4.17 Set-Reset Latch
NAME_TABLE:
C_Function_Name: cm_d_srlatch
Spice_Model_Name: d_srlatch
Description: "digital sr-type latch"
PORT_TABLE:
Port Name: s r
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: [2 -] r
Null_Allowed: no no
PORT_TABLE:
Port Name: enable
Description: "enable"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: no
Vector_Bounds: -
Null_Allowed: no
PORT_TABLE:
Port Name: set reset
Description: "set" "reset"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PORT_TABLE:
Port Name: out Nout
Description: "data output" "inverted data output"
Direction: out out
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Default_Type: d d
Allowed_Types: [d] [d]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: sr_delay
Description: "delay from s or r input change"
Data_Type: real
Default_Value: 1.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_delay set_delay
Description: "delay from enable" "delay from SET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: reset_delay ic
Description: "delay from RESET" "output initial state"
Data_Type: real boolean
Default_Value: 1.0e-9 0
Limits: [1.0e-12 -] -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: sr_load enable_load
Description: "s & r input loads (F)" "enable load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: set_load reset_load
Description: "set load value (F)" "reset load (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
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Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

Description: The digital sr-type latch is a one-bit, level-sensitive storage element which will
output the value dictated by the state of the s and r pins whenever the enable input line
is high (ONE). This value is stored (i.e., held on the out line) whenever the enable line is
low (ZERO). The particular value chosen is as shown below:

s=ZERO, r=ZERO => out=current value (i.e., not change in output)
s=ZERO, r=ONE => out=ZERO
s=ONE, r=ZERO => out=ONE
s=ONE, r=ONE => out=UNKNOWN

Asynchronous set and reset signals exist, and each of the four methods of changing the stored
output of the d srlatch (i.e., s/r combination changing with enable=ONE, enable changing to
ONE from ZERO with an output-changing combination of s and r, raising set and raising re-
set) have separate delays associated with them. You may also specify separate rise and fall
delay values that are added to those specified for the input lines; these allow for more faithful
reproduction of the output characteristics of different IC fabrication technologies.

Note that any UNKNOWN inputs other than on the s and r lines when enable=ZERO immedi-
ately cause the output to go UNKNOWN.

Example SPICE Usage:
a4 12 4 5 6 3 14 16 latch2
.model latch2 d_srlatch(sr_delay = 13.0e-9 enable_delay = 22.0e-9
+ set_delay = 25.0e-9
+ reset_delay = 27.0e-9 ic = 2
+ rise_delay = 10.0e-9 fall_delay = 3e-9)

12.4.18 State Machine
NAME_TABLE:
C_Function_Name: cm_d_state
Spice_Model_Name: d_state
Description: "digital state machine"
PORT_TABLE:
Port Name: in clk
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Description: "input" "clock"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: yes no
PORT_TABLE:
Port Name: reset out
Description: "reset" "output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: no yes
Vector_Bounds: - [1 -]
Null_Allowed: yes no
PARAMETER_TABLE:
Parameter_Name: clk_delay reset_delay
Description: "delay from CLK" "delay from RESET"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE: Parameter_Name: state_file
Description: "state transition specification file name"
Data_Type: string
Default_Value: "state.txt"
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: reset_state
Description: "default state on RESET & at DC"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
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Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: clk_load
Description: "clock loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: reset_load
Description: "reset loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital state machine provides for straightforward descriptions of clocked
combinatorial logic blocks with a variable number of inputs and outputs and with an
unlimited number of possible states. The model can be configured to behave as virtually
any type of counter or clocked combinatorial logic block and can be used to replace very
large digital circuit schematics with an identically functional but faster representation.
The d state model is configured through the use of a state definition file (state.in) which
resides in a directory of your choosing. The file defines all states to be understood by the
model, plus input bit combinations which trigger changes in state. An example state.in
file is shown below:

----------- begin file -------------
* This is an example state.in file. This file
* defines a simple 2-bit counter with one input. The
* value of this input determines whether the counter counts
* up (in = 1) or down (in = 0).
0 0s 0s 0 -> 3

1 -> 1
1 0s 1z 0 -> 0

1 -> 2
2 1z 0s 0 -> 1

1 -> 3
3 1z 1z 0 -> 2
3 1z 1z 1 -> 0
------------------ end file ---------------

Several attributes of the above file structure should be noted. First, ALL LINES IN THE FILE
MUST BE ONE OF FOUR TYPES. These are:
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1. A comment, beginning with a “*” in the first column.

2. A header line, which is a complete description of the current state, the outputs corre-
sponding to that state, an input value, and the state that the model will assume should that
input be encountered. The first line of a state definition must ALWAYS be a header line.

3. A continuation line, which is a partial description of a state, consisting of an input value
and the state that the model will assume should that input be encountered. Note that
continuation lines may only be used after the initial header line definition for a state.

4. A line containing nothing but white-spaces (space, form-feed, newline, carriage return,
tab, vertical tab).

A line which is not one of the above will cause a file-loading error. Note that in the example
shown, whitespace (any combination of blanks, tabs, commas) is used to separate values, and
that the character "->" is used to underline the state transition implied by the input preceding it.
This particular character is not critical in of itself, and can be replaced with any other character
or non-broken combination of characters that you prefer (e.g. “==>”, “>>”, “:”, “resolves_to”,
etc.)

The order of the output and input bits in the file is important; the first column is always inter-
preted to refer to the “zeroth” bit of input and output. Thus, in the file above, the output from
state 1 sets out[0] to “0s”, and out[1] to “1z”.

The state numbers need not be in any particular order, but a state definition (which consists of
the sum total of all lines which define the state, its outputs, and all methods by which a state can
be exited) must be made on contiguous line numbers; a state definition cannot be broken into
sub-blocks and distributed randomly throughout the file. On the other hand, the state definition
can be broken up by as many comment lines as you desire.

Header files may be used throughout the state.in file, and continuation lines can be discarded
completely if you so choose: continuation lines are primarily provided as a convenience.

Example SPICE Usage:
a4 [2 3 4 5] 1 12 [22 23 24 25 26 27 28 29] state1
.model state1 d_state(clk_delay = 13.0e-9 reset_delay = 27.0e-9
+ state_file = "newstate.txt" reset_state = 2)

12.4.19 Frequency Divider
NAME_TABLE:
C_Function_Name: cm_d_fdiv
Spice_Model_Name: d_fdiv
Description: "digital frequency divider"
PORT_TABLE:
Port Name: freq_in freq_out
Description: "frequency input" "frequency output"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
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Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: div_factor high_cycles
Description: "divide factor" "# of cycles for high out"
Data_Type: int int
Default_Value: 2 1
Limits: [1 -] [1 div_factor-1]
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: i_count
Description: "divider initial count value"
Data_Type: int
Default_Value: 0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: rise_delay fall_delay
Description: "rise delay" "fall delay"
Data_Type: real real
Default_Value: 1.0e-9 1.0e-9
Limits: [1.0e-12 -] [1.0e-12 -]
Vector: yes yes
Vector_Bounds: in in
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: freq_in_load
Description: "freq_in load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital frequency divider is a programmable step-down divider which accepts
an arbitrary divisor (div_factor), a duty-cycle term (high_cycles), and an initial count
value (i_count). The generated output is synchronized to the rising edges of the input
signal. Rise delay and fall delay on the outputs may also be specified independently.

Example SPICE Usage:
a4 3 7 divider
.model divider d_fdiv(div_factor = 5 high_cycles = 3
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+ i_count = 4 rise_delay = 23e-9
+ fall_delay = 9e-9)

12.4.20 RAM
NAME_TABLE:
C_Function_Name: cm_d_ram
Spice_Model_Name: d_ram
Description: "digital random-access memory"
PORT_TABLE:
Port Name: data_in data_out
Description: "data input line(s)" "data output line(s)"
Direction: in out
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes yes
Vector_Bounds: [1 -] data_in
Null_Allowed: no no
PORT_TABLE:
Port Name: address write_en
Description: "address input line(s)" "write enable line"
Direction: in in
Default_Type: d d
Allowed_Types: [d] [d]
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: no no
PORT_TABLE:
Port Name: select
Description: "chip select line(s)"
Direction: in
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: [1 16]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: select_value
Description: "decimal active value for select line comparison"
Data_Type: int
Default_Value: 1
Limits: [0 32767]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: ic
Description: "initial bit state @ dc"
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Data_Type: int
Default_Value: 2
Limits: [0 2]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: read_delay
Description: "read delay from address/select/write.en active"
Data_Type: real
Default_Value: 100.0e-9
Limits: [1.0e-12 -]
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: data_load address_load
Description: "data_in load value (F)" "addr. load value (F)"
Data_Type: real real
Default_Value: 1.0e-12 1.0e-12
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: select_load
Description: "select load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes
PARAMETER_TABLE:
Parameter_Name: enable_load
Description: "enable line load value (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

Description: The digital RAM is an M-wide, N-deep random access memory element with
programmable select lines, tristated data out lines, and a single write/~read line. The
width of the RAM words (M) is set through the use of the word width parameter. The
depth of the RAM (N) is set by the number of address lines input to the device. The value
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of N is related to the number of address input lines (P) by the following equation:

2P = N

There is no reset line into the device. However, an initial value for all bits may be specified
by setting the ic parameter to either 0 or 1. In reading a word from the ram, the read delay
value is invoked, and output will not appear until that delay has been satisfied. Separate
rise and fall delays are not supported for this device.
Note that UNKNOWN inputs on the address lines are not allowed during a write. In
the event that an address line does indeed go unknown during a write, THE ENTIRE
CONTENTS OF THE RAM WILL BE SET TO UNKNOWN. This is in contrast to the
data in lines being set to unknown during a write; in that case, only the selected word
will be corrupted, and this is corrected once the data lines settle back to a known value.
Note that protection is added to the write en line such that extended UNKNOWN values
on that line are interpreted as ZERO values. This is the equivalent of a read operation and
will not corrupt the contents of the RAM. A similar mechanism exists for the select lines.
If they are unknown, then it is assumed that the chip is not selected.
Detailed timing-checking routines are not provided in this model, other than for the enable
delay and select delay restrictions on read operations. You are advised, therefore, to
carefully check the timing into and out of the RAM for correct read and write cycle
times, setup and hold times, etc. for the particular device they are attempting to model.

Example SPICE Usage:
a4 [3 4 5 6] [3 4 5 6] [12 13 14 15 16 17 18 19] 30 [22 23 24] ram2
.model ram2 d_ram(select_value = 2 ic = 2 read_delay = 80e-9)

12.4.21 Digital Source
NAME_TABLE:
C_Function_Name: cm_d_source
Spice_Model_Name: d_source
Description: "digital signal source"
PORT_TABLE:
Port Name: out
Description: "output"
Direction: out
Default_Type: d
Allowed_Types: [d]
Vector: yes
Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: input_file
Description: "digital input vector filename"
Data_Type: string
Default_Value: "source.txt"
Limits: -
Vector: no
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Vector_Bounds: -
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: input_load
Description: "input loading capacitance (F)"
Data_Type: real
Default_Value: 1.0e-12
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: no

Description: The digital source provides for straightforward descriptions of digital signal vec-
tors in a tabular format. The model reads input from the input file and, at the times
specified in the file, generates the inputs along with the strengths listed.

The format of the input file is as shown below. Note that comment lines are delineated through
the use of a single “*” character in the first column of a line. This is similar to the way
the SPICE program handles comments.

* T c n n n . . .
* i l o o o . . .
* m o d d d . . .
* e c e e e . . .
* k a b c . . .
0.0000 Uu Uu Us Uu . . .
1.234e-9 0s 1s 1s 0z . . .
1.376e-9 0s 0s 1s 0z . . .
2.5e-7 1s 0s 1s 0z . . .
2.5006e-7 1s 1s 1s 0z . . .
5.0e-7 0s 1s 1s 0z . . .

Note that in the example shown, whitespace (any combination of blanks, tabs, commas) is used
to separate the time and state/strength tokens. The order of the input columns is important; the
first column is always interpreted to mean “time”. The second through the N’th columns map
to the out[0] through out[N-2] output nodes. A non-commented line which does not contain
enough tokens to completely define all outputs for the digital source will cause an error. Also,
time values must increase monotonically or an error will result in reading the source file.

Errors will also occur if a line exists in source.txt which is neither a comment nor vector line.
The only exception to this is in the case of a line that is completely blank; this is treated as
a comment (note that such lines often occur at the end of text within a file; ignoring these in
particular prevents nuisance errors on the part of the simulator).

Example SPICE Usage:
a3 [2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] input_vector
.model input_vector d_source(input_file = "source_simple.text")
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12.5 Predefined Node Types for event driven simulation

The following prewritten node types are included with the XSPICE simulator. These should
provide you not only with valuable event-driven modeling capabilities, but also with examples
to use for guidance in creating new UDN (user defined node) types. You may access these node
data by the plot (17.5.43) or eprint (17.5.23) commands.

12.5.1 Digital Node Type

The “digital” node type is directly built into the simulator. 12 digital node values are available.
They are described by a two character string (the state/strength token). The first character (0,
1, or U) gives the state of the node (logic zero, logic one, or unknown logic state). The second
character (s, r, z, u) gives the "strength" of the logic state (strong, resistive, hi-impedance, or
undetermined). So these are the values we have: 0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz, 0u, 1u, Uu.

12.5.2 Real Node Type

The “real” node type provides for event-driven simulation with double-precision floating point
data. This type is useful for evaluating sampled-data filters and systems. The type implements
all optional functions for User-Defined Nodes, including inversion and node resolution. For
inversion, the sign of the value is reversed. For node resolution, the resultant value at a node is
the sum of all values output to that node. The node is implemented as a user defined node in
ngspice/src/xspice/icm/xtraevt/real.

12.5.3 Int Node Type

The “int” node type provides for event-driven simulation with integer data. This type is useful
for evaluating round-off error effects in sampled-data systems. The type implements all optional
functions for User-Defined Nodes, including inversion and node resolution. For inversion, the
sign of the integer value is reversed. For node resolution, the resultant value at a node is the
sum of all values output to that node. The node is implemented as a user defined node in
ngspice/src/xspice/icm/xtraevt/int.

12.5.4 (Digital) Input/Output

The analog code models use the standard (analog) nodes provided by ngspice and thus are using
all the commands for sourcing, storing, printing, and plotting data.

I/O for event nodes (digital, real, int, and UDNs) currently is much more limited to a few tools.
For output you may use the plot (17.5.43) or eprint (17.5.23) commands. For input, you may
create a test bench with existing code models (oscillator (12.3.3), frequency divider (12.4.19),
state machine (12.4.18) etc.). Reading data from a file is offered by d_source (12.4.21). Some
comments and hints have been provided by Sdaau. You may also use the analog input from file,
(filesource 12.2.8) and convert its analog input to the digital type by the adc_bridge (12.3.2). If
you want reading data from a VCD file, you may have a look at ngspice-users forum and apply
a python script provided by Sdaau to translate the VCD data to d_source or filesource input.

http://sourceforge.net/projects/ngspice/forums/forum/133842/topic/4835459
http://en.wikipedia.org/wiki/Value_change_dump
http://sourceforge.net/projects/ngspice/forums/forum/133842/topic/4839104 
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Verilog A Device models

13.1 Introduction

The ngspice-adms interface will implement extra HICUM level0 and level2 (HICUM model
web page), MEXTRAM(MEXTRAM model web page), EKV(EKV model web page) and
PSP(NXP MOS model 9 web page) models written in Verilog-A behavior language.

13.2 adms

To compile Verilog-A compact models into ngspice-ready C models the the program admsXml
is required. Details of this software are described in adms home page.

13.3 How to integrate a Verilog-A model into ngspice

13.3.1 How to setup a *.va model for ngspice

The root entry for new Verilog-A models is \src\spicelib\devices\adms. Below the modelname
entry the Verilog-A code should reside in folder admsva
(e.g.: ngspice\src\spicelib\devices\adms\ekv\admsva\ekv.va). The file extension is fixed to .va.

Certain files must modified to create the interface to ngspice - see the guideline README.adms
in the ngspice root.

13.3.2 Adding admsXml to your build environment

To facilitate the installation of adms, a source code package has been assembled for use with
ngspice, available as a zip file for download. It is based on adms source code from the subver-
sion repository downloaded on August 1st, 2010, and has been slightly modified (see ChangeLog).

Under OS LINUX (tested with SUSE 11.2, 64 bit) you may expand the zip file and run
./autogen_lin.sh, followed by ’make’ and ’make install’.
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http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
http://www.iee.et.tu-dresden.de/iee/eb/hic_new/hic_intro.html
http://mextram.ewi.tudelft.nl/
http://ekv.epfl.ch/
http://www.nxp.com/models/mos_models/model9/index.html
http://mot-adms.sourceforge.net
http://ngspice.sourceforge.net/adms2/adms-svn-ngspice-src.zip
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Under OS CYGWIN (tested with actual CYGWIN on MS Windows 7, 64 bit), please use
./autogen_cyg.sh, followed by ’make’ and ’make install’.

Under OS MINGW, a direct compilation would require the additional installation of perl module
XML-LibXML which is not as straightforward as it should be. However you may start with a
CYGWIN compile as described above. If you then go to your MSYS window, cd to the adms
top directory and start ./mingw-compile.sh, you will obtain admsXml.exe, copied to MSYS
/bin, and you are ready to go. To facilitate installation under MS Windows, a admsXml.exe
zipped binary is available. Just copy it to MSYS /bin directory and start working on your verilog
models.

A short test of a successful installation is:

$ admsXml -v

$ [usage..] release name="admsXml" version="2.3.0" date="Aug 4 2010"
time="10:24:18"

Compilation of admsXml with MS Visual Studio is not possible, because the source code has
variable declarations not only at the top of a block, but deliberately also in the following lines.
This is o.k. by the C99 standard, but not supported by MS Visual Studio.

http://ngspice.sourceforge.net/adms2/adms-admsXml-Win32-bin.zip
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Mixed-Level Simulation (ngspice with
TCAD)

14.1 Cider

Ngspice implements mixed-level simulation through the merging of its code with CIDER (de-
tails see chapt. 30).

CIDER is a mixed-level circuit and device simulator that provides a direct link between tech-
nology parameters and circuit performance. A mixed-level circuit and device simulator can
provide greater simulation accuracy than a stand-alone circuit or device simulator by numer-
ically modeling the critical devices in a circuit. Compact models can be used for noncritical
devices.

CIDER couples the latest version of SPICE3 (version 3F.2) [JOHN92] to a internal C-based
device simulator, DSIM. SPICE3 provides circuit analyses, compact models for semiconductor
devices, and an interactive user interface. DSIM provides accurate, one- and two-dimensional
numerical device models based on the solution of Poisson’s equation, and the electron and
hole current-continuity equations. DSIM incorporates many of the same basic physical models
found in the the Stanford two-dimensional device simulator PISCES [PINT85]. Input to CIDER
consists of a SPICE-like description of the circuit and its compact models, and PISCES-like
descriptions of the structures of numerically modeled devices. As a result, CIDER should seem
familiar to designers already accustomed to these two tools. For example, SPICE3F.2 input files
should run without modification, producing identical results.

CIDER is based on the mixed-level circuit and device simulator CODECS [MAYA88] and is a
replacement for this program. The basic algorithms of the two programs are the same. Some of
the differences between CIDER and CODECS are described below. The CIDER input format
has greater flexibility and allows increased access to physical model parameters. New physical
models have been added to allow simulation of state-of-the-art devices. These include trans-
verse field mobility degradation [GATE90] that is important in scaled-down MOSFETs and a
polysilicon model for poly-emitter bipolar transistors. Temperature dependence has been in-
cluded for most physical models over the range from -50°C to 150°C. The numerical models
can be used to simulate all the basic types of semiconductor devices: resistors, MOS capaci-
tors, diodes, BJTs, JFETs and MOSFETs. BJTs and JFETs can be modeled with or without a
substrate contact. Support has been added for the management of device internal states. Post-
processing of device states can be performed using the NUTMEG user interface of SPICE3.
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Previously computed states can be loaded into the program to provide accurate initial guesses
for subsequent analyses. Finally, numerous small bugs have been discovered and fixed, and the
program has been ported to a wider variety of computing platforms.

Berkeley tradition calls for the naming of new versions of programs by affixing a (number,
letter, number) triplet to the end of the program name. Under this scheme, CIDER should
instead be named CODECS2A.l. However, tradition has been broken in this case because major
incompatibilities exist between the two programs and because it was observed that the acronym
CODECS is already used in the analog design community to refer to coder-decoder circuits.

Details of the basic semiconductor equations and the physical models used by CIDER are not
provided in this manual. Unfortunately, no other single source exists which describes all of
the relevant background material. Comprehensive reviews of device simulation can be found
in [PINT90] and the book [SELB84]. CODECS and its inversion-layer mobility model are
described in [MAYA88] and LGATE90], respectively. PISCES and its models are described in
[PINT85]. Temperature dependencies for the PISCES models used by CIDER are available in
[SOLL90].

14.2 GSS, Genius

For LINUX users the cooperation of the TCAD software GSS with ngspice might be of interest,
see http://ngspice.sourceforge.net/gss.html. This project is no longer maintained however, but
has moved into the Genius simulator, still available as open source cogenda genius.

http://ngspice.sourceforge.net/gss.html
http://www.cogenda.com/article/download
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Analyses and Output Control (batch
mode)

The command lines described in this chapter are specifying analyses and outputs within the
circuit description file. They start with a “.” (dot commands). Specifying analyses and plots
(or tables) in the input file with dot commands is used with batch runs. Batch mode is entered
when either the -b option is given upon starting ngspice

ngspice -b -r rawfile.raw circuitfile.cir

or when the default input source is redirected from a file (see also chapt. 16.4.1).

ngspice < circuitfile.cir

In batch mode, the analyses specified by the control lines in the input file (e.g. “.ac”, “.tran”,
etc.) are immediately executed. If the -r rawfile option is given then all data generated is
written to a ngspice rawfile. The rawfile may later be read by the interactive mode of ngspice
using the “load” command (see 17.5.36). In this case, the .save line (see 15.6) may be used to
record the value of internal device variables (see Appendix, chapter 31).

If a rawfile is not specified, then output plots (in “line-printer” form) and tables can be printed
according to the .print, .plot, and .four control lines, described in chapter 15.6.

If ngspice is started in interactive mode (see chapt. 16.4.2), like

ngspice circuitfile.cir

and no control section (.control ... .endc, see 16.4.3) is provided in the circuit file, the dot
commands are not executed immediately, but are waiting for manually receiving the command
“run”.

15.1 Simulator Variables (.options)

Various parameters of the simulations available in Ngspice can be altered to control the ac-
curacy, speed, or default values for some devices. These parameters may be changed via the
“option” command (described in chapt. 17.5.42) or via the “.options” line:
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General form:

. o p t i o n s op t1 op t2 . . . ( o r o p t = o p t v a l . . . )

Examples:

. o p t i o n s r e l t o l = .005 t r t o l =8

The options line allows the user to reset program control and user options for specific simulation
purposes. Options specified to Ngspice via the “option” command (see chapt. ) are also
passed on as if specified on a .options line. Any combination of the following options may
be included, in any order. “x” (below) represents some positive number.

15.1.1 General Options

ACCT causes accounting and run time statistics to be printed.

NOACCT no printing of statistics, no printing of the Initial Transient Solution.

NOINIT suppresses only printing of the Initial Transient Solution, maybe combined with
ACCT.

LIST causes the summary listing of the input data to be printed.

NOMOD suppresses the printout of the model parameters.

NOPAGE suppresses page ejects.

NODE causes the printing of the node table.

OPTS causes the option values to be printed.

TEMP=x Resets the operating temperature of the circuit. The default value is 27 ◦C (300K).
TEMP can be overridden per device by a temperature specification on any temperature
dependent instance. May also be generally overridden by a .TEMP card (2.11).

TNOM=x resets the nominal temperature at which device parameters are measured. The de-
fault value is 27 ◦C (300 deg K). TNOM can be overridden by a specification on any
temperature dependent device model.

WARN=1|0 enables or turns of SOA (Safe Operating Area) voltage warning messages (default:
0).

MAXWARNS=x specifies the maximum number of SOA (Safe Operating Area) warning mes-
sages per model (default: 5).

15.1.2 DC Solution Options

The following options controls properties pertaining to DC analysis and algorithms. Since
transient analysis is based on DC many of the options affect the latter one.

ABSTOL=x resets the absolute current error tolerance of the program. The default value is 1
pA.



15.1. SIMULATOR VARIABLES (.OPTIONS) 229

GMIN=x resets the value of GMIN, the minimum conductance allowed by the program. The
default value is 1.0e-12.

ITL1=x resets the dc iteration limit. The default is 100.

ITL2=x resets the dc transfer curve iteration limit. The default is 50.

KEEPOPINFO Retain the operating point information when either an AC, Distortion, or Pole-
Zero analysis is run. This is particularly useful if the circuit is large and you do not want
to run a (redundant) ".OP" analysis.

PIVREL=x resets the relative ratio between the largest column entry and an acceptable pivot
value. The default value is 1.0e-3. In the numerical pivoting algorithm the allowed min-
imum pivot value is determined by EPSREL=AMAX1(PIVREL*MAXVAL, PIVTOL)
where MAXVAL is the maximum element in the column where a pivot is sought (partial
pivoting).

PIVTOL=x resets the absolute minimum value for a matrix entry to be accepted as a pivot.
The default value is 1.0e-13.

RELTOL=x resets the relative error tolerance of the program. The default value is 0.001
(0.1%).

RSHUNT=x introduces a resistor from each analog node to ground. The value of the resistor
should be high enough to not interfere with circuit operations. The XSPICE option has to
be enabled (see 32.1.5) .

VNTOL=x resets the absolute voltage error tolerance of the program. The default value is 1
µV .

15.1.2.1 Matrix Conditioning info

In most SPICE-based simulators, problems can arise with certain circuit topologies. One of
the most common problems is the absence of a DC path to ground at some node. This may
happen, for example, when two capacitors are connected in series with no other connection at
the common node or when certain code models are cascaded. The result is an ill-conditioned
or nearly singular matrix that prevents the simulation from completing. The XSPICE option
introduces the “rshunt” option to help eliminate this problem. When used, this option inserts
resistors to ground at all the analog nodes in the circuit. In general, the value of “rshunt” should
be set to some very high resistance (e.g. 1000 Meg Ohms or greater) so that the operation of the
circuit is essentially unaffected, but the matrix problems are corrected. If you should encounter
a “no DC path to ground” or a “matrix is nearly singular” error message with your circuit, you
should try adding the following .option card to your circuit description deck.

.option rshunt = 1.0e12

Usually a value of 1.0e12 is sufficient to correct the matrix problems. However, if you still have
problems, you may wish to try lowering this value to 1.0e10 or 1.0e9.

Another matrix conditioning problem might occur if you try to place an inductor in parallel to
a voltage source. An ac simulation will fail, because it is preceded by an op analysis. Option
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noopac (15.1.3) will help if the circuit is linear. If the circuit is non-linear, you will need the
op analysis. Then adding a small resistor (e.g. 1e-4 Ohms) in series to the inductor will help to
obtain convergence.

.option rseries = 1.0e-4

will add a series resistor to each inductor in the circuit. Be careful if you use behavioral induc-
tors (see 3.2.12), because the result may become unpredictable.

15.1.3 AC Solution Options

NOOPAC Do not do an operating point (OP) analysis before the AC analysis. To become
valid, this option requires that the circuit is linear, thus consists only of R, L, and C
devices, independent V, I sources and linear dependent E, G, H, and F sources (without
poly statement, non-behavioral). If a non-linear device is detected, the OP analysis will
be executed automatically. This option is of interest for example in nested LC circuits,
where there is no series resistance for the L device given, which during OP analysis may
result in an ill formed matrix, yields an error message and aborts the simulation.

15.1.4 Transient Analysis Options

AUTOSTOP stops a transient analysis after successfully calculating all measure functions
(15.4) specified with the dot command .meas. autostop is not available with meas (17.5.37)
used in control mode.

CHGTOL=x resets the charge tolerance of the program. The default value is 1.0e-14.

CONVSTEP=x relative step limit applied to code models.

CONVABSSTEP=x absolute step limit applied to code models.

GMINSTEPS=x [*] sets number of Gmin steps to be attempted. If the value is set to zero, the
gmin stepping algorithm is disabled. In such case the source stepping algorithm becomes
the standard when the standard procedure fails to converge to a solution.

ITL3=x resets the lower transient analysis iteration limit. the default value is 4. (Note: not
implemented in Spice3).

ITL4=x resets the transient analysis time-point iteration limit. the default is 10.

ITL5=x resets the transient analysis total iteration limit. the default is 5000. Set ITL5=0 to
omit this test. (Note: not implemented in Spice3).

ITL6=x [*] synonym for SRCSTEPS.

MAXEVITER=x sets the number of event iterations that are allowed at an analysis point

MAXOPALTER=x specifies the maximum number of analog/event alternations that the sim-
ulator can use in solving a hybrid circuit.
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MAXORD=x [*] specifies the maximum order for the numerical integration method used by
SPICE. Possible values for the Gear method are from 2 (the default) to 6. Using the value
1 with the trapezoidal method specifies backward Euler integration.

METHOD=name sets the numerical integration method used by SPICE. Possible names are
"Gear" or "trapezoidal" (or just "trap"). The default is trapezoidal.

NOOPALTER=TRUE|FALSE if set to false alternations between analog/event are enabled.

RAMPTIME=x this options sets the rate of change of independent supplies and code model
inductors and capacitors with initial conditions specified.

SRCSTEPS=x [*] a non-zero value causes SPICE to use a source-stepping method to find the
DC operating point. Its value specifies the number of steps.

TRTOL=x resets the transient error tolerance. The default value is 7. This parameter is an esti-
mate of the factor by which ngspice overestimates the actual truncation error. If XSPICE
is enabled and ’A’ devices included, the value is internally set to 1 for higher precision.
This will cost a factor of two in CPU time during transient analysis.

15.1.5 ELEMENT Specific options

BADMOS3 Use the older version of the MOS3 model with the “kappa” discontinuity.

DEFAD=x resets the value for MOS drain diffusion area; the default is 0.0.

DEFAS=x resets the value for MOS source diffusion area; the default is 0.0.

DEFL=x resets the value for MOS channel length; the default is 100.0 µm.

DEFW=x resets the value for MOS channel width; the default is 100.0 µm.

SCALE=x set the element scaling factor for geometric element parameters whose default unit
is meters. As an example: scale=1u and a MOSFET instance parameter W=10 will result
in a width of 10µm for this device. An area parameter AD=20 will result in 20e-12 m2.
Following instance parameters are scaled:

• Resistors and Capacitors: W, L

• Diodes: W, L, Area

• JFET, MESFET: W, L, Area

• MOSFET: W, L, AS, AD, PS, PD, SA, SB, SC, SD

15.1.6 Transmission Lines Specific Options

TRYTOCOMPACT Applicable only to the LTRA model (see 6.2.1). When specified, the
simulator tries to condense LTRA transmission line’s past history of input voltages and
currents.
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15.1.7 Precedence of option and .options commands

There are various ways to set the above mentioned options in Ngspice. If no option or
.options lines are set by the user, internal default values are given for each of the simula-
tor variables.

You may set options in the init files spinit or .spiceinit via the option command (see chapt.
17.5.42). The values given here will supersede the default values. If you set options via the
.options line in your input file, their values will supersede the default and init file data. Finally
if you set options inside a .control ... .endc section, these values will supersede any values of
the respective simulator variables given so far.

15.2 Initial Conditions

15.2.1 .NODESET: Specify Initial Node Voltage Guesses

General form:

. NODESET V(NODNUM)=VAL V(NODNUM)=VAL . . .

. NODESET ALL=VAL

Examples:

. NODESET V( 1 2 ) = 4 . 5 V( 4 ) = 2 . 2 3

. NODESET ALL=1.5

The .nodeset line helps the program find the dc or initial transient solution by making a pre-
liminary pass with the specified nodes held to the given voltages. The restriction is then released
and the iteration continues to the true solution. The .nodeset line may be necessary for con-
vergence on bistable or a-stable circuits. .nodeset all=val allows to set all starting node
voltages (except for the ground node) in a single line. In general, the .nodeset line should not
be necessary.

15.2.2 .IC: Set Initial Conditions

General form:

. i c v ( nodnum )= v a l v ( nodnum )= v a l . . .

Examples:

. i c v (11 )=5 v(4)=−5 v ( 2 ) = 2 . 2

The .ic line is for setting transient initial conditions. It has two different interpretations, de-
pending on whether the uic parameter is specified on the .tran control line. Also, one should
not confuse this line with the .nodeset line. The .nodeset line is only to help dc convergence,
and does not affect final bias solution (except for multi-stable circuits). The two interpretations
of this line are as follows:

1. When the uic parameter is specified on the .tran line, then the node voltages specified
on the .ic control line are used to compute the capacitor, diode, BJT, JFET, and MOSFET
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initial conditions. This is equivalent to specifying the ic=... parameter on each device
line, but is much more convenient. The ic=... parameter can still be specified and takes
precedence over the .ic values. Since no dc bias (initial transient) solution is computed
before the transient analysis, one should take care to specify all dc source voltages on the
.ic control line if they are to be used to compute device initial conditions.

2. When the uic parameter is not specified on the .tran control line, the dc bias (initial
transient) solution is computed before the transient analysis. In this case, the node volt-
ages specified on the .ic control line is forced to the desired initial values during the
bias solution. During transient analysis, the constraint on these node voltages is removed.
This is the preferred method since it allows ngspice to compute a consistent dc solution.

15.3 Analyses

15.3.1 .AC: Small-Signal AC Analysis

General form:

. ac dec nd f s t a r t f s t o p

. ac o c t no f s t a r t f s t o p

. ac l i n np f s t a r t f s t o p

Examples:

. ac dec 10 1 10K

. ac dec 10 1K 100MEG

. ac l i n 100 1 100HZ

dec stands for decade variation, and nd is the number of points per decade. oct stands for
octave variation, and no is the number of points per octave. lin stands for linear variation, and
np is the number of points. fstart is the starting frequency, and fstop is the final frequency.
If this line is included in the input file, ngspice performs an AC analysis of the circuit over the
specified frequency range. Note that in order for this analysis to be meaningful, at least one
independent source must have been specified with an ac value. Typically it does not make much
sense to specify more than one ac source. If you do, the result will be a superposition of all
sources, thus difficult to interpret.

Example:

B a s i c RC c i r c u i t
r 1 2 1 . 0
c 2 0 1 . 0
v i n 1 0 dc 0 ac 1 $ <−−− t h e ac s o u r c e
. o p t i o n s n o a c c t
. ac dec 10 . 0 1 10
. p l o t ac vdb ( 2 ) x log
. end

In this ac (or ’small signal’) analysis all non-linear devices are linearized around their actual dc
operating point. All Ls and Cs get their imaginary value, depending on the actual frequency
step. Each output vector will be calculated relative to the input voltage (current) given by the ac
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value (Vin equals to 1 in the example above). The resulting node voltages (and branch currents)
are complex vectors. Therefore you have to be careful using the plot command. Especially you
may use the variants of vxx(node) described in chapter 15.6.2 like vdb(2) (see example above).

15.3.2 .DC: DC Transfer Function

General form:

. dc srcnam v s t a r t v s t o p v i n c r [ s r c 2 s t a r t 2 s t o p 2 i n c r 2 ]

Examples:

. dc VIN 0 . 2 5 5 . 0 0 . 2 5

. dc VDS 0 10 . 5 VGS 0 5 1

. dc VCE 0 10 . 2 5 IB 0 10U 1U

. dc RLoad 1k 2k 100

. dc TEMP −15 75 5

The .dc line defines the dc transfer curve source and sweep limits (again with capacitors open
and inductors shorted). srcnam is the name of an independent voltage or current source, a
resistor or the circuit temperature. vstart, vstop, and vincr are the starting, final, and in-
crementing values respectively. The first example causes the value of the voltage source VIN
to be swept from 0.25 Volts to 5.0 Volts in increments of 0.25 Volts. A second source (src2)
may optionally be specified with associated sweep parameters. In this case, the first source is
swept over its range for each value of the second source. This option can be useful for obtaining
semiconductor device output characteristics. See the example circuit description on transistor
characteristics (21.3).

15.3.3 .DISTO: Distortion Analysis

General form:

. d i s t o dec nd f s t a r t f s t o p < f 2 o v e r f 1 >

. d i s t o o c t no f s t a r t f s t o p < f 2 o v e r f 1 >

. d i s t o l i n np f s t a r t f s t o p < f 2 o v e r f 1 >

Examples:

. d i s t o dec 10 1kHz 100Mhz

. d i s t o dec 10 1kHz 100Mhz 0 . 9

The .disto line does a small-signal distortion analysis of the circuit. A multi-dimensional
Volterra series analysis is done using multi-dimensional Taylor series to represent the nonlin-
earities at the operating point. Terms of up to third order are used in the series expansions.

If the optional parameter f2overf1 is not specified, .disto does a harmonic analysis - i.e.,
it analyses distortion in the circuit using only a single input frequency F1, which is swept as
specified by arguments of the .disto command exactly as in the .ac command. Inputs at this
frequency may be present at more than one input source, and their magnitudes and phases are
specified by the arguments of the distof1 keyword in the input file lines for the input sources
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(see the description for independent sources). (The arguments of the distof2 keyword are not
relevant in this case).

The analysis produces information about the AC values of all node voltages and branch currents
at the harmonic frequencies 2F1 and , vs. the input frequency F1 as it is swept. (A value of 1
(as a complex distortion output) signifies cos(2π(2F1)t) at 2F1 and cos(2π(3F1)t) at 3F1, using
the convention that 1 at the input fundamental frequency is equivalent to cos(2πF1t).) The
distortion component desired (2F1 or 3F1) can be selected using commands in ngnutmeg, and
then printed or plotted. (Normally, one is interested primarily in the magnitude of the harmonic
components, so the magnitude of the AC distortion value is looked at). It should be noted that
these are the AC values of the actual harmonic components, and are not equal to HD2 and HD3.
To obtain HD2 and HD3, one must divide by the corresponding AC values at F1, obtained from
an .ac line. This division can be done using ngnutmeg commands.

If the optional f2overf1 parameter is specified, it should be a real number between (and not
equal to) 0.0 and 1.0; in this case, .disto does a spectral analysis. It considers the circuit with
sinusoidal inputs at two different frequencies F1 and F2. F1 is swept according to the .disto
control line options exactly as in the .ac control line. F2 is kept fixed at a single frequency
as F1 sweeps - the value at which it is kept fixed is equal to f2overf1 times fstart. Each
independent source in the circuit may potentially have two (superimposed) sinusoidal inputs
for distortion, at the frequencies F1 and F2. The magnitude and phase of the F1 component are
specified by the arguments of the distof1 keyword in the source’s input line (see the descrip-
tion of independent sources); the magnitude and phase of the F2 component are specified by the
arguments of the distof2 keyword. The analysis produces plots of all node voltages/branch
currents at the intermodulation product frequencies F1 +F2, F1−F2, and (2F1)−F2, vs the
swept frequency F1. The IM product of interest may be selected using the setplot command,
and displayed with the print and plot commands. It is to be noted as in the harmonic analysis
case, the results are the actual AC voltages and currents at the intermodulation frequencies, and
need to be normalized with respect to .ac values to obtain the IM parameters.

If the distof1 or distof2 keywords are missing from the description of an independent
source, then that source is assumed to have no input at the corresponding frequency. The default
values of the magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified
in degrees.

It should be carefully noted that the number f2overf1 should ideally be an irrational number,
and that since this is not possible in practice, efforts should be made to keep the denominator
in its fractional representation as large as possible, certainly above 3, for accurate results (i.e.,
if f2overf1 is represented as a fraction A/B, where A and B are integers with no common
factors, B should be as large as possible; note that A < B because f2overf1 is constrained
to be < 1). To illustrate why, consider the cases where f2overf1 is 49/100 and 1/2. In a
spectral analysis, the outputs produced are at F1 +F2, F1−F2 and 2F1−F2. In the latter case,
F1−F2 = F2, so the result at the F1−F2 component is erroneous because there is the strong
fundamental F2 component at the same frequency. Also, F1 +F2 = 2F1−F2 in the latter case,
and each result is erroneous individually. This problem is not there in the case where f2overf1
= 49/100, because F1−F2 = 51/100 F1 <> 49/100 F1 = F2. In this case, there are two very
closely spaced frequency components at F2 and F1−F2. One of the advantages of the Volterra
series technique is that it computes distortions at mix frequencies expressed symbolically (i.e.
nF1 +mF2), therefore one is able to obtain the strengths of distortion components accurately
even if the separation between them is very small, as opposed to transient analysis for example.
The disadvantage is of course that if two of the mix frequencies coincide, the results are not
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merged together and presented (though this could presumably be done as a postprocessing step).
Currently, the interested user should keep track of the mix frequencies himself or herself and
add the distortions at coinciding mix frequencies together should it be necessary.

Only a subset of the ngspice nonlinear device models supports distortion analysis. These are

• Diodes (DIO),

• BJT,

• JFET (level 1),

• MOSFETs (levels 1, 2, 3, 9, and BSIM1),

• MESFET (level 1).

15.3.4 .NOISE: Noise Analysis

General form:

. n o i s e v ( o u t p u t < , r e f >) s r c ( dec | l i n | o c t ) p t s f s t a r t f s t o p
+ <pts_per_summary >

Examples:

. n o i s e v ( 5 ) VIN dec 10 1kHZ 100Mhz

. n o i s e v ( 5 , 3 ) V1 o c t 8 1 . 0 1 . 0 e6 1

The .noise line does a noise analysis of the circuit. output is the node at which the total
output noise is desired; if ref is specified, then the noise voltage v(output) - v(ref) is
calculated. By default, ref is assumed to be ground. src is the name of an independent source
to which input noise is referred. pts, fstart and fstop are .ac type parameters that specify
the frequency range over which plots are desired. pts_per_summary is an optional integer; if
specified, the noise contributions of each noise generator is produced every pts_per_summary
frequency points. The .noise control line produces two plots:

1. one for the Noise Spectral Density curves and

2. one for the total Integrated Noise over the specified frequency range.

All noise voltages/currents are in squared units (V 2/Hz and A2/Hz for spectral density, V 2 and A2

for integrated noise).

15.3.5 .OP: Operating Point Analysis

General form:

. op

The inclusion of this line in an input file directs ngspice to determine the dc operating point of
the circuit with inductors shorted and capacitors opened.
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Note: a DC analysis is automatically performed prior to a transient analysis to determine the
transient initial conditions, and prior to an AC small-signal, Noise, and Pole-Zero analysis to
determine the linearized, small-signal models for nonlinear devices (see the KEEPOPINFO
variable 15.1.2).

15.3.6 .PZ: Pole-Zero Analysis

General form:

. pz node1 node2 node3 node4 c u r p o l

. pz node1 node2 node3 node4 c u r z e r

. pz node1 node2 node3 node4 c u r pz

. pz node1 node2 node3 node4 v o l p o l

. pz node1 node2 NODE3 node4 v o l z e r

. pz node1 node2 node3 node4 v o l pz

Examples:

. pz 1 0 3 0 c u r p o l

. pz 2 3 5 0 v o l z e r

. pz 4 1 4 1 c u r pz

cur stands for a transfer function of the type (output voltage)/(input current) while vol stands
for a transfer function of the type (output voltage)/(input voltage). pol stands for pole analysis
only, zer for zero analysis only and pz for both. This feature is provided mainly because
if there is a nonconvergence in finding poles or zeros, then, at least the other can be found.
Finally, node1 and node2 are the two input nodes and node3 and node4 are the two output
nodes. Thus, there is complete freedom regarding the output and input ports and the type of
transfer function.

In interactive mode, the command syntax is the same except that the first field is pz instead of
.pz. To print the results, one should use the command “print all”.

15.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis

General form:

. SENS OUTVAR

. SENS OUTVAR AC DEC ND FSTART FSTOP

. SENS OUTVAR AC OCT NO FSTART FSTOP

. SENS OUTVAR AC LIN NP FSTART FSTOP

Examples:

. SENS V( 1 ,OUT)

. SENS V(OUT) AC DEC 10 100 100k

. SENS I (VTEST)

The sensitivity of OUTVAR to all non-zero device parameters is calculated when the SENS
analysis is specified. OUTVAR is a circuit variable (node voltage or voltage-source branch
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current). The first form calculates sensitivity of the DC operating-point value of OUTVAR.
The second form calculates sensitivity of the AC values of OUTVAR. The parameters listed for
AC sensitivity are the same as in an AC analysis (see ".AC" above). The output values are in
dimensions of change in output per unit change of input (as opposed to percent change in output
or per percent change of input).

15.3.8 .TF: Transfer Function Analysis

General form:

. t f o u t v a r i n s r c

Examples:

. t f v ( 5 , 3 ) VIN

. t f i (VLOAD) VIN

The .tf line defines the small-signal output and input for the dc small-signal analysis. outvar
is the small signal output variable and insrc is the small-signal input source. If this line is
included, ngspice computes the dc small-signal value of the transfer function (output/input),
input resistance, and output resistance. For the first example, ngspice would compute the ratio
of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small signal output resistance
measured across nodes 5 and 3.

15.3.9 .TRAN: Transient Analysis

General form:

. t r a n t s t e p t s t o p < t s t a r t <tmax >> < uic >

Examples:

. t r a n 1 ns 100 ns

. t r a n 1 ns 1000 ns 500 ns

. t r a n 10 ns 1 us

tstep is the printing or plotting increment for line-printer output. For use with the post-
processor, tstep is the suggested computing increment. tstop is the final time, and tstart
is the initial time. If tstart is omitted, it is assumed to be zero. The transient analysis always
begins at time zero. In the interval <zero, tstart>, the circuit is analyzed (to reach a steady
state), but no outputs are stored. In the interval <tstart, tstop>, the circuit is analyzed and
outputs are stored. tmax is the maximum stepsize that ngspice uses; for default, the program
chooses either tstep or (tstop-tstart)/50.0, whichever is smaller. tmax is useful when one
wishes to guarantee a computing interval which is smaller than the printer increment, tstep.

An initial transient operating point at time zero is calculated according to the following proce-
dure: all independent voltages and currents are applied with their time zero values, all capaci-
tances are opened, inductances are shorted, the non linear device equations are solved iteratively.

uic (use initial conditions) is an optional keyword which indicates that the user does not want
ngspice to solve for the quiescent operating point before beginning the transient analysis. If this
keyword is specified, ngspice uses the values specified using IC=... on the various elements as
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the initial transient condition and proceeds with the analysis. If the .ic control line has been
specified (see 15.2.2), then the node voltages on the .ic line are used to compute the initial
conditions for the devices. IC=... will take precedence over the values given in the .ic control
line. If neither IC=... nor the .ic control line is given for a specific node, node voltage zero is
assumed.

Look at the description on the .ic control line (15.2.2) for its interpretation when uic is not
specified.

15.3.10 Transient noise analysis (at low frequency)

In contrast to the analysis types described above the transient noise simulation (noise current or
voltage versus time) is not implemented as a dot command, but is integrated with the indepen-
dent voltage source vsrc (isrc still not yet available) (see 4.1.7) and used in combination with
the .tran transient analysis (15.3.9).

Transient noise analysis deals with noise currents or voltages added to your circuits as a time
dependent signal of randomly generated voltage excursion on top of a fixed dc voltage. The
sequence of voltage values has random amplitude, but equidistant time intervals, selectable by
the user (parameter NT). The resulting voltage waveform is differentiable and thus does not
require any modifications of the matrix solving algorithms.

White noise is generated by the ngspice random number generator, applying the Box-Muller
transform. Values are generated on the fly, each time when a breakpoint is hit.

The 1/f noise is generated with an algorithm provided by N. J. Kasdin (“Discrete simulation of
colored noise and stochastic processes and 1/ f a power law noise generation”, Proceedings of
the IEEE, Volume 83, Issue 5, May 1995 Page(s):802 – 827). The noise sequence (one for each
voltage/current source with 1/f selected) is generated upon start up of the simulator and stored
for later use. The number of point is determined by the total simulation time divided by NT,
rounded up the the nearest power of 2. Each time a breakpoint (n ?NT , relevant to the noise
signal) is hit, the next value is retrieved from the sequence.

If you want a random, but reproducible sequence, you may select a seed value for the random
number generator by adding

set rndseed=nn

to the spinit or .spiceinit file, nn being a positive integer number.

The transient noise analysis will allow the simulation of the three most important noise sources.
Thermal noise is described by the Gaussian white noise. Flicker noise (pink noise or 1 over
f noise) with an exponent between 0 and 2 is provided as well. Shot noise is dependent on
the current flowing through a device and may be simulated by applying a non-linear source as
demonstrated in the following example:
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Example:

* Shot n o i s e t e s t w i th B sou rce , d i o d e
* v o l t a g e on d e v i c e ( d iode , f o r w a r d )
Vdev o u t 0 DC 0 PULSE ( 0 . 4 0 . 4 5 10u )
* diode , f o r w a r d d i r e c t i o n , t o be modeled wi th n o i s e
D1 mess 0 DMOD
. model DMOD D IS =1e−14 N=1
X1 0 mess o u t i s h o t
* d e v i c e between 1 and 2
* new o u t p u t t e r m i n a l s o f d e v i c e i n c l u d i n g n o i s e : 1 and 3
. s u b c k t i s h o t 1 2 3
* w h i t e n o i s e s o u r c e wi th rms 1V
* 20000 sample p o i n t s
VNG 0 11 DC 0 TRNOISE(1 1n 0 0)
* measure t h e c u r r e n t i ( v1 )
V1 2 3 DC 0
* c a l c u l a t e t h e s h o t n o i s e
* s q r t (2* c u r r e n t *q* bandwid th )
BI 1 3 I = s q r t (2* abs ( i ( v1 ) ) * 1 . 6 e−19*1e7 )* v ( 1 1 )
. ends i s h o t

. t r a n 1n 20u

. c o n t r o l
run
p l o t (−1)* i ( vdev )
. endc
. end

The selection of the delta time step (NT) is worth discussing. Gaussian white noise has unlim-
ited bandwidth and thus unlimited energy content. This is unrealistic. The bandwidth of real
noise is limited, but it is still called "White" if it is the same level throughout the frequency
range of interest, e.g. the bandwidth of your system. Thus you may select NT to be a factor of
10 smaller than the frequency limit of your circuit. A thorough analysis is still needed to clar-
ify the appropriate factor! The transient method is probably most suited for circuits including
switches, which are not amenable to the small signal .NOISE analysis (chapter 15.3.4).

This is the price you have to pay for transient noise analysis: the number of required time steps
for simulation will increase, and thus the simulation time. But modern computers deliver a lot
of speed, and it may be well worth of trying and experimenting.

In addition to white and 1/f noise the independent voltage and current sources offer a random
telegraph signal (RTS) noise source, also known as burst noise or popcorn noise, again for
transient analysis. For each voltage (current) source offering RTS noise an individual noise
amplitude is required for input, as well as a mean capture time and a mean emission time.
The amplitude resembles the influence of a single trap on the current or voltage. The capture
and emission times emulate the filling and emptying of the trap, typically following a Poisson
process. They are generated from an random exponential distribution with their respective mean
values given by the user. To simulate an ensemble of traps, you may combine several current or
voltage sources with different parameters.
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All three sources (white, 1/f, and RTS) may be combined in a single command line.

RTS noise example:

* w h i t e n o i s e , 1 / f n o i s e , RTS n o i s e

* v o l t a g e s o u r c e
VRTS2 13 12 DC 0 t r n o i s e (0 0 0 0 5m 18u 30u )
VRTS3 11 0 DC 0 t r n o i s e (0 0 0 0 10m 20u 40u )
VALL 12 11 DC 0 t r n o i s e (1m 1u 1 . 0 0 . 1m 15m 22u 50u )

VW1of 21 0 DC t r n o i s e (1m 1u 1 . 0 0 . 1m)

* c u r r e n t s o u r c e
IRTS2 10 0 DC 0 t r n o i s e (0 0 0 0 5m 18u 30u )
IRTS3 10 0 DC 0 t r n o i s e (0 0 0 0 10m 20u 40u )
IALL 10 0 DC 0 t r n o i s e (1m 1u 1 . 0 0 . 1m 15m 22u 50u )
R10 10 0 1

IW1of 9 0 DC t r n o i s e (1m 1u 1 . 0 0 . 1m)
R a l l 9 0 1

* sample p o i n t s
. t r a n 1u 500u

. c o n t r o l
run
p l o t v ( 1 3 ) v ( 2 1 )
p l o t v ( 1 0 ) v ( 9 )
. endc

. end

Some details on RTS noise modeling are available in a recent article [20], available here.

Anyhow this transient noise feature is still experimental!

The following questions (among others) are to be solved:

• clarify the theoretical background

• noise limit of plain ngspice (numerical solver, fft etc.)

• time step (NT) selection

• calibration of noise spectral density

• how to generate noise from a transistor model

• application benefits and limits

http://www.see.ed.ac.uk/~tbt/iscas09.pdf
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15.3.11 .PSS: Periodic Steady State Analysis

(Experimental code, not yet made publicly available!)

General form:

. p s s g f r e q t s t a b oscnob p s s p o i n t s harms s c i t e r s t e a d y c o e f f < u ic >

Examples:

. p s s 150 200 e−3 2 1024 11 50 5e−3 u i c

. p s s 624 e6 1u v _ p l u s 1024 10 150 5e−3 u i c

. p s s 624 e6 500n bou t 1024 10 100 5e−3 u i c

gfreq is guessed frequency of fundamental suggested by user. When performing transient
analysis the PSS algorithm tries to infer a new rough guess rgfreq on the fundamental. If
gfreq is out of ±10% with respect to rgfreq then gfreq is discarded.

tstab is stabilization time before the shooting begin to search for the PSS. It has to be noticed
that this parameter heavily influence the possibility to reach the PSS. Thus is a good practice to
ensure a circuit to have a right tstab, e.g. performing a separate TRAN analysis before to run
PSS analysis.

oscnob is the node or branch where the oscillation dynamic is expected. PSS analysis will give
a brief report of harmonic content at this node or branch.

psspoints is number of step in evaluating predicted period after convergence is reached. It
is useful only in Time Domain plots. However this number should be higher than 2 times the
requested harms. Otherwise the PSS analysis will properly adjust it.

harms number of harmonics to be calculated as requested by the user.

sciter number of allowed shooting cycle iterations. Default is 50.

steady_coeff is the weighting coefficient for calculating the Global Convergence Error (GCE)
which is the reference value in order to infer is convergence is reached. The lower steady_coeff
is set, the higher the accuracy of predicted frequency can be reached but at longer analysis time
and sciter number. Default is 1e-3.

uic (use initial conditions) is an optional keyword which indicates that the user does not want
ngspice to solve for the quiescent operating point before beginning the transient analysis. If this
keyword is specified, ngspice uses the values specified using IC=... on the various elements as
the initial transient condition and proceeds with the analysis. If the .ic control line has been
specified, then the node voltages on the .ic line are used to compute the initial conditions for
the devices. Look at the description on the .ic control line for its interpretation when uic is
not specified.

15.4 Measurements after AC, DC and Transient Analysis

15.4.1 .meas(ure)

The .meas or .measure statement (and its equivalent meas command, see chapt. 17.5.37) are
used to analyze the output data of a tran, ac, or dc simulation. The command is executed
immediately after the simulation has finished.
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15.4.2 batch versus interactive mode

.meas analysis may not be used in batch mode (-b command line option), if an output file
(rawfile) is given at the same time (-r rawfile command line option). In this batch mode
ngspice will write its simulation output data directly to the output file. The data is not kept in
memory, thus is no longer available for further analysis. This is made to allow a very large
output stream with only a relatively small memory usage. For .meas to be active you need to
run the batch mode with a .plot or .print command. A better alternative may be to start
ngspice in interactive mode.

If you need batch like operation, you may add a .control ... .endc section to the input
file:

Example:

* i n p u t f i l e
. . .
. t r a n 1 ns 1000 ns
. . .
*********************************
. c o n t r o l
run
w r i t e o u t p u t f i l e d a t a
. endc
*********************************
. end

and start ngspice in interactive mode, e.g. by running the command

ngspice inputfile .

.meas<ure> then prints its user-defined data analysis to the standard output. The analysis in-
cludes propagation, delay, rise time, fall time, peak-to-peak voltage, minimum or maximum
voltage, the integral or derivative over a specified period and several other user defined values.

15.4.3 General remarks

The measure type {DC|AC|TRAN|SP} depends on the data which are to be evaluated, either
originating from a dc analysis, an ac analysis, a transient simulation. SP to analyze a spectrum
from the spec or fft commands is only available when executed in a meas command, see
17.5.37.

result will be a vector containing the result of the measurement. trig_variable, targ_variable,
and out_variable are vectors stemming from the simulation, e.g. a voltage vector v(out).

VAL=val expects a real number val. It may be as well a parameter in ” or {} expanding to a
real number.

TD=td and AT=time expect a time value if measure type is tran. For ac and sp AT will be a
frequency value, TD is ignored. For dc analysis AT is a voltage (or current), TD is ignored as
well.

CROSS=# requires an integer number #. CROSS=LAST is possible as well. The same is
expected by RISE and FALL.
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Frequency and time values may start at 0 and extend to positive real numbers. Voltage (or
current) inputs for the independent (scale) axis in a dc analysis may start or end at arbitrary real
valued numbers.

*

************

Be careful because not all of the .measure commands have been implemented so far!

’deriv’ and ’error’ is missing

************

*

15.4.4 Input

In the following lines you will get some explanation on the .measure commands. A simple
simulation file with two sines of different frequencies may serve as an example. The transient
simulation delivers time as the independent variable and two voltages as output (dependent
variables).

Input file:

F i l e : s imple−meas−t r a n . sp
* Simple . measurement examples
* t r a n s i e n t s i m u l a t i o n o f two s i n e s i g n a l s wi th d i f f e r e n t

f r e q u e n c i e s
vac1 1 0 DC 0 s i n (0 1 1k 0 0)
vac2 2 0 DC 0 s i n (0 1 . 2 0 . 9 k 0 0)
. t r a n 10u 5m
*
. measure t r a n . . . $ f o r t h e d i f f e r e n t i n p u t s s e e below !
*
. c o n t r o l
run
p l o t v ( 1 ) v ( 2 )
. endc
. end

After displaying the general syntax of the .measurement statement, some examples are posted,
referring to the input file given above.

15.4.5 Trig Targ

.measure according to general form 1 measures the difference in dc voltage, frequency or time
between two points selected from one or two output vectors. The current examples all are using
transient simulation. Measurements for tran analysis start after a delay time td. If you run other
examples with ac simulation or spectrum analysis, time may be replaced by frequency, after a
dc simulation the independent variable may become a voltage or current.
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General form 1:

.MEASURE {DC | AC | TRAN | SP} r e s u l t TRIG t r i g _ v a r i a b l e VAL= v a l <TD=
td > <CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST> <FALL=# |
FALL=LAST> <TRIG AT=time > TARG t a r g _ v a r i a b l e VAL= v a l <TD=td >

<CROSS=# | CROSS=LAST> <RISE=# | RISE=LAST> <FALL=# | FALL=
LAST> <TARG AT=time >

Measure statement example (for use in the input file given above):

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 RISE=2

measures the time difference between v(1) reaching 0.5 V for the first time on its first rising
slope (TRIG) versus reaching 0.5 V again on its second rising slope (TARG). I.e. it measures
the signal period.

Output:

tdiff = 1.000000e-003 targ= 1.083343e-003 trig= 8.334295e-005

Measure statement example:

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 RISE=3

measures the time difference between v(1) reaching 0.5 V for the first time on its rising slope
versus reaching 0.5 V on its rising slope for the third time (i.e. two periods).

Measure statement:

.measure tran tdiff TRIG v(1) VAL=0.5 RISE=1 TARG v(1) VAL=0.5 FALL=1

measures the time difference between v(1) reaching 0.5V for the first time on its rising slope
versus reaching 0.5 V on its first falling slope.

Measure statement:

.measure tran tdiff TRIG v(1) VAL=0 FALL=3 TARG v(2) VAL=0 FALL=3

measures the time difference between v(1) reaching 0V its third falling slope versus v(2) reach-
ing 0 V on its third falling slope.

Measure statement:

.measure tran tdiff TRIG v(1) VAL=-0.6 CROSS=1 TARG v(2) VAL=-0.8 CROSS=1

measures the time difference between v(1) crossing -0.6 V for the first time (any slope) versus
v(2) crossing -0.8 V for the first time (any slope).

Measure statement:

.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CROSS=3

measures the time difference between the time point 1ms versus the time when v(2) crosses -0.8
V for the third time (any slope).

15.4.6 Find ... When

The FIND and WHEN functions allow to measure any dependent or independent time, fre-
quency, or dc parameter, when two signals cross each other or a signal crosses a given value.
Measurements start after a delay TD and may be restricted to a range between FROM and TO.
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General form 2:

.MEASURE {DC | AC | TRAN | SP} r e s u l t WHEN o u t _ v a r i a b l e = v a l <TD=td > <
FROM= val > <TO= val > <CROSS=# | CROSS=LAST> <RISE=# | RISE=
LAST> <FALL=# | FALL=LAST>

Measure statement:

.measure tran teval WHEN v(2)=0.7 CROSS=LAST

measures the time point when v(2) crosses 0.7 V for the last time (any slope).

General form 3:

.MEASURE {DC | AC | TRAN | SP} r e s u l t WHEN o u t _ v a r i a b l e = o u t _ v a r i a b l e 2
<TD=td > <FROM= val > <TO= val > <CROSS=# | CROSS=LAST> <RISE=#

| RISE=LAST> <FALL=# | FALL=LAST>

Measure statement:

.measure tran teval WHEN v(2)=v(1) RISE=LAST

measures the time point when v(2) and v(1) are equal, v(2) rising for the last time.

General form 4:

.MEASURE {DC | AC | TRAN | SP} r e s u l t FIND o u t _ v a r i a b l e WHEN
o u t _ v a r i a b l e 2 = v a l <TD=td > <FROM= val > <TO= val > <CROSS=# |
CROSS=LAST> <RISE=# | RISE=LAST> <FALL=# | FALL=LAST>

Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=-0.4 FALL=LAST

returns the dependent (y) variable drawn from v(2) at the time point when v(1) equals a value
of -0.4, v(1) falling for the last time.

General form 5:

.MEASURE {DC | AC | TRAN | SP} r e s u l t FIND o u t _ v a r i a b l e WHEN
o u t _ v a r i a b l e 2 = o u t _ v a r i a b l e 3 <TD=td > <CROSS=# | CROSS=LAST>
<RISE = # | RISE=LAST> <FALL= # |FALL=LAST>

Measure statement:

.measure tran yeval FIND v(2) WHEN v(1)=v(3) FALL=2

returns the dependent (y) variable drawn from v(2) at the time point when v(1) crosses v(3),
v(1) falling for the second time.

General form 6:

.MEASURE {DC | AC | TRAN | SP} r e s u l t FIND o u t _ v a r i a b l e AT= v a l

Measure statement:

.measure tran yeval FIND v(2) AT=2m

returns the dependent (y) variable drawn from v(2) at the time point 2 ms (given by AT=time).
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15.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT

General form 7:

.MEASURE {DC | AC | TRAN | SP} r e s u l t {AVG| MIN |MAX| PP |RMS| MIN_AT |
MAX_AT} o u t _ v a r i a b l e <TD=td > <FROM= val > <TO= val >

Measure statements:

.measure tran ymax MAX v(2) from=2m to=3m

returns the maximum value of v(2) inside the time interval between 2 ms and 3 ms.

.measure tran tymax MAX_AT v(2) from=2m to=3m

returns the time point of the maximum value of v(2) inside the time interval between 2 ms and
3 ms.

.measure tran ypp PP v(1) from=2m to=4m

returns the peak to peak value of v(1) inside the time interval between 2 ms and 4 ms.

.measure tran yrms RMS v(1) from=2m to=4m

returns the root mean square value of v(1) inside the time interval between 2 ms and 4 ms.

.measure tran yavg AVG v(1) from=2m to=4m

returns the average value of v(1) inside the time interval between 2 ms and 4 ms.

15.4.8 Integ

General form 8:

.MEASURE {DC | AC | TRAN | SP} r e s u l t INTEG<RAL> o u t _ v a r i a b l e <TD=td >
<FROM= val > <TO= val >

Measure statement:

.measure tran yint INTEG v(2) from=2m to=3m

returns the area under v(2) inside the time interval between 2 ms and 3 ms.

15.4.9 param

General form 9:

.MEASURE {DC | AC | TRAN | SP} r e s u l t param = ’ e x p r e s s i o n ’

Measure statement:

.param fval=5

.measure tran yadd param=’fval + 7’

will evaluate the given expression fval + 7 and return the value 12.

’Expression’ is evaluated according to the rules given in chapt. 2.8.5 during start up of ngspice.
It may contain parameters defined with the .param statement. It may also contain parameters
resulting from preceding .meas statements.
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.param vout_diff=50u

...

.measure tran tdiff TRIG AT=1m TARG v(2) VAL=-0.8 CROSS=3

.meas tran bw_chk param=’(tdiff < vout_diff) ? 1 : 0’

will evaluate the given ternary function and return the value 1 in bw_chk, if tdiff measured is
smaller than parameter vout_diff.

The expression may not contain vectors like v(10), e.g. anything resulting directly from a
simulation. This may be handled with the following .meas command option.

15.4.10 par(’expression’)

The par(’expression’) option (15.6.6) allows to use algebraic expressions in the .measure
lines. Every out_variable may be replaced by par(’expression’) within the general forms 1-9
described above. Internally par(’expression’) will be substituted by a vector according to the
rules of the B source (chapt. 5.1). A typical example of the general form is shown below:

General form 10:

.MEASURE {DC | AC | TRAN | SP} r e s u l t FIND p a r ( ’ e x p r e s s i o n ’ ) AT= v a l

Measure statement:

.measure tran vtest find par(’(v(2)*v(1))’) AT=2.3m

will return the product of the two voltages at time point 2.3 ms.

15.4.11 Deriv

General form:

.MEASURE {DC | AC | TRAN | SP} r e s u l t DERIV<ATIVE> o u t _ v a r i a b l e AT=
v a l

.MEASURE {DC | AC | TRAN | SP} r e s u l t DERIV<ATIVE> o u t _ v a r i a b l e WHEN
o u t _ v a r i a b l e 2 = v a l + <TD=td >

+ <CROSS=# | CROSS=LAST> <RISE = # | RISE=LAST> <FALL= # |FALL=LAST>

.MEASURE {DC | AC | TRAN | SP} r e s u l t DERIV<ATIVE> o u t _ v a r i a b l e
+ WHEN o u t _ v a r i a b l e 2 = o u t _ v a r i a b l e 3
+ <TD=td >
+ <CROSS=# | CROSS=LAST> <RISE = # | RISE=LAST> <FALL= # |FALL=LAST>

.MEASURE {DC|AC|TRAN|SP} result DERIV<ATIVE> ... is not yet available.

15.4.12 More examples

Some other examples, also showing the use of parameters, are given below. Corresponding
demonstration input files are distributed with ngspice in folder /examples/measure.
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Other examples:

. meas t r a n i n v _ d e l a y 2 t r i g v ( i n ) v a l = ’ vp / 2 ’ t d =1n f a l l =1 t a r g v
( o u t )

+ v a l = ’ vp / 2 ’ r i s e =1
. meas t r a n t e s t _ d a t a 1 t r i g AT = 1n t a r g v ( o u t ) v a l = ’ vp / 2 ’ r i s e

=3
. meas t r a n o u t _ s l e w t r i g v ( o u t ) v a l = ’0 .2* vp ’ r i s e =2 t a r g v ( o u t )
+ v a l = ’0 .8* vp ’ r i s e =2
. meas t r a n d e l a y _ c h k param = ’( i n v _ d e l a y < 100 ps ) ? 1 : 0 ’
. meas t r a n skew when v ( o u t ) =0 .6
. meas t r a n skew2 when v ( o u t ) =skew_meas
. meas t r a n skew3 when v ( o u t ) =skew_meas f a l l =2
. meas t r a n skew4 when v ( o u t ) =skew_meas f a l l =LAST
. meas t r a n skew5 FIND v ( o u t ) AT=2n
. meas t r a n v0_min min i ( v0 ) from = ’ d f a l l ’ t o = ’ d f a l l + p e r i o d ’
. meas t r a n v0_avg avg i ( v0 ) from = ’ d f a l l ’ t o = ’ d f a l l + p e r i o d ’
. meas t r a n v 0 _ i n t e g i n t e g i ( v0 ) from = ’ d f a l l ’ t o = ’ d f a l l + p e r i o d ’
. meas t r a n v0_rms rms i ( v0 ) from = ’ d f a l l ’ t o = ’ d f a l l + p e r i o d ’
. meas dc i s _ a t FIND i ( vs ) AT=1
. meas dc is_max max i ( vs ) from =0 t o =3 .5
. meas dc v d s _ a t when i ( vs ) =0 .01
. meas ac v o u t _ a t FIND v ( o u t ) AT=1MEG
. meas ac v o u t _ a t d FIND vdb ( o u t ) AT=1MEG
. meas ac vout_max max v ( o u t ) from =1k t o =10MEG
. meas ac f r e q _ a t when v ( o u t ) =0 .1
. meas ac v o u t _ d i f f t r i g v ( o u t ) v a l =0 .1 r i s e =1 t a r g v ( o u t ) v a l

=0 .1 f a l l =1
. meas ac f i x e d _ d i f f t r i g AT = 10k t a r g v ( o u t ) v a l =0 .1 r i s e =1
. meas ac vou t_avg avg v ( o u t ) from =10k t o =1MEG
. meas ac v o u t _ i n t e g i n t e g v ( o u t ) from =20k t o =500k
. meas ac f r e q _ a t 2 when v ( o u t ) =0 .1 f a l l =LAST
. meas ac bw_chk param = ’( v o u t _ d i f f < 100k ) ? 1 : 0 ’
. meas ac vout_rms rms v ( o u t ) from =10 t o =1G

15.5 Safe Operating Area (SOA) warning messages

By setting the .option warn=1 the Safe Operation Area check algorithm is enabled. In this case
for .op, .dc and .tran analysis warning messages are issued if the branch voltages of devices (Re-
sistors, Capacitors, Diodes, BJTs and MOSFETs) exceed limits which are specified by model
parameters. All these parameters are positive with default value of infinity.

The check is executed after Newton-Raphson iteration is finished i.e. in transient analysis in
each time step. The user can specify an additional .option maxwarns (default: 5) to limit the
count of messages.

The output goes on default to stdout or alternatively to a file specified by command line option
–soa-log=filename.
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15.5.1 Resistor and Capacitor SOA model parameters

1. Bv_max: if |Vr| or |Vc| exceed Bv_max, SOA warning is issued.

15.5.2 Diode SOA model parameter

1. Bv_max: if |Vj| exceeds Bv_max, SOA warning is issued.

2. Fv_max: if |Vf| exceeds Fv_max, SOA warning is issued.

15.5.3 BJT SOA model parameter

1. Vbe_max: if |Vbe| exceeds Vbe_max, SOA warning is issued.

2. Vbc_max: if |Vbc| exceeds Vbc_max, SOA warning is issued.

3. Vce_max: if |Vce| exceeds Vce_max, SOA warning is issued.

4. Vcs_max: if |Vcs| exceeds Vcs_max, SOA warning is issued.

15.5.4 MOS SOA model parameter

1. Vgs_max: if |Vgs| exceeds Vgs_max, SOA warning is issued.

2. Vgd_max: if |Vgd| exceeds Vgd_max, SOA warning is issued.

3. Vgb_max: if |Vgb| exceeds Vgb_max, SOA warning is issued.

4. Vds_max: if |Vds| exceeds Vds_max, SOA warning is issued.

5. Vbs_max: if |Vbs| exceeds Vbs_max, SOA warning is issued.

6. Vbd_max: if |Vbd| exceeds Vbd_max, SOA warning is issued.

15.6 Batch Output

The following commands .print (15.6.2), .plot (15.6.3) and .four (15.6.4) are valid only
if ngspice is started in batch mode (see 16.4.1), whereas .save and the equivalent .probe are
aknowledged in all operating modes.

If you start ngspice in batch mode using the -b command line option, the outputs of .print,
.plot, and .four are printed to the console output. You may use the output redirection of your
shell to direct this printout into a file (not available with MS Windows GUI). As an alternative
you may extend the ngspice command by specifying an output file:

ngspice -b -o output.log input.cir

If you however add the command line option -r to create a rawfile, .print and .plot are
ignored. If you want to involve the graphics plot output of ngspice, use the control mode
(16.4.3) instead of the -b batch mode option.
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15.6.1 .SAVE: Name vector(s) to be saved in raw file

General form:

. s ave v e c t o r v e c t o r v e c t o r . . .

Examples:

. s ave i ( v i n ) node1 v ( node2 )

. s ave @m1[ i d ] v s o u r c e # b r an c h

. s ave a l l @m2[ v d s a t ]

The vectors listed on the .SAVE line are recorded in the rawfile for use later with ngspice or
ngnutmeg (ngnutmeg is just the data-analysis half of ngspice, without the ability to simulate).
The standard vector names are accepted. Node voltages may be saved by giving the nodename
or v(nodename). Currents through an independent voltage source are given by i(sourcename)
or sourcename#branch. Internal device data are accepted as @dev[param].

If no .SAVE line is given, then the default set of vectors is saved (node voltages and voltage
source branch currents). If .SAVE lines are given, only those vectors specified are saved. For
more discussion on internal device data, e.g. @m1[id], see Appendix, chapt. 31.1. If you want
to save internal data in addition to the default vector set, add the parameter all to the additional
vectors to be saved. If the command .save vm(out) is given, and you store the data in a
rawfile, only the original data v(out) are stored. The request for storing the magnitude is ignored,
because this may be added later during rawfile data evaluation with ngnutmeg or ngspice. See
also the section on the interactive command interpreter (chapter 17.5) for information on how
to use the rawfile.

15.6.2 .PRINT Lines

General form:

. p r i n t p r t y p e ov1 <ov2 . . . ov8 >

Examples:

. p r i n t t r a n v ( 4 ) i ( v i n )

. p r i n t dc v ( 2 ) i ( v s r c ) v ( 2 3 , 17)

. p r i n t ac vm( 4 , 2 ) v r ( 7 ) vp ( 8 , 3 )

The .print line defines the contents of a tabular listing of one to eight output variables. prtype
is the type of the analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs
are desired. The form for voltage or current output variables is the same as given in the previ-
ous section for the print command; Spice2 restricts the output variable to the following forms
(though this restriction is not enforced by ngspice):
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V(N1<,N2>) specifies the voltage difference between nodes N1 and N2.
If N2 (and the preceding comma) is omitted, ground (0) is
assumed. See the print command in the previous section
for more details. For compatibility with SPICE2, the
following five additional values can be accessed for the ac
analysis by replacing the "V" in V(N1,N2) with:

VR Real part
VI Imaginary part

VM Magnitude
VP Phase

VDB 20log10(magnitude)
I(VXXXXXXX) specifies the current flowing in the independent voltage

source named VXXXXXXX. Positive current flows from
the positive node, through the source, to the negative node.
(Not yet implemented: For the ac analysis, the
corresponding replacements for the letter I may be made in
the same way as described for voltage outputs.)

Output variables for the noise and distortion analyses have a different general form from that of
the other analyses. There is no limit on the number of .print lines for each type of analysis.
The par(’expression’) option (15.6.6) allows to use algebraic expressions in the .print
lines. .width (15.6.7) selects the maximum number of characters per line.

15.6.3 .PLOT Lines

.plot creates a printer plot output.

General form:

. p l o t p l t y p e ov1 <( plo1 , ph i1 ) > <ov2 <( plo2 , ph i2 ) > . . . ov8 >

Examples:

. p l o t dc v ( 4 ) v ( 5 ) v ( 1 )

. p l o t t r a n v ( 1 7 , 5 ) ( 2 , 5 ) i ( v i n ) v ( 1 7 ) ( 1 , 9 )

. p l o t ac vm ( 5 ) vm( 3 1 , 24) vdb ( 5 ) vp ( 5 )

. p l o t d i s t o hd2 hd3 (R) sim2

. p l o t t r a n v ( 5 , 3 ) v ( 4 ) ( 0 , 5 ) v ( 7 ) ( 0 , 10)

The .plot line defines the contents of one plot of from one to eight output variables. pltype
is the type of analysis (DC, AC, TRAN, NOISE, or DISTO) for which the specified outputs are
desired. The syntax for the ovi is identical to that for the .print line and for the plot command
in the interactive mode.

The overlap of two or more traces on any plot is indicated by the letter “X”. When more than
one output variable appears on the same plot, the first variable specified is printed as well
as plotted. If a printout of all variables is desired, then a companion .print line should be
included. There is no limit on the number of .plot lines specified for each type of analysis.
The par(’expression’) option (15.6.6) allows to use algebraic expressions in the .plot
lines.
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15.6.4 .FOUR: Fourier Analysis of Transient Analysis Output

General form:

. f o u r f r e q ov1 <ov2 ov3 . . . >

Examples:

. f o u r 100K v ( 5 )

The .four (or Fourier) line controls whether ngspice performs a Fourier analysis as a part of
the transient analysis. freq is the fundamental frequency, and ov1 is the desired vector to be
analyzed. The Fourier analysis is performed over the interval <TSTOP-period, TSTOP>, where
TSTOP is the final time specified for the transient analysis, and period is one period of the
fundamental frequency. The dc component and the first nine harmonics are determined. For
maximum accuracy, TMAX (see the .tran line) should be set to period/100.0 (or less for very
high-Q circuits). The par(’expression’) option (15.6.6) allows to use algebraic expressions
in the .four lines.

15.6.5 .PROBE: Name vector(s) to be saved in raw file

General form:

. p robe v e c t o r < v e c t o r v e c t o r . . . >

Examples:

. p robe i ( v i n ) i n p u t o u t p u t

. p robe @m1[ i d ]

Same as .SAVE (see chapt. 15.6.1).

15.6.6 par(’expression’): Algebraic expressions for output

General form:

p a r ( ’ e x p r e s s i o n ’ )
o u t p u t = p a r ( ’ e x p r e s s i o n ’ ) $ n o t i n . measure

Examples:

. f o u r 1001 sq1= p a r ( ’ v ( 1 ) * v ( 1 ) ’ )

. measure t r a n v t e s t f i n d p a r ( ’ ( v ( 2 ) * v ( 1 ) ) ’ ) AT=2 .3m

. p r i n t t r a n o u t p u t = p a r ( ’ v ( 1 ) / v ( 2 ) ’ ) v ( 1 ) v ( 2 )

. p l o t dc v ( 1 ) d i f f = p a r ( ’ ( v (4)−v ( 2 ) ) / 0 . 0 1 ’ ) ou t222

In the output lines .four, .plot, .print, .save and in the .measure evaluation it is pos-
sible to add algebraic expression for output, in addition to vectors. All of these output lines
accept par(’expression’), where expression is any expression as has already been defined
for the B source (see chapter 5.1). Thus expression may contain predefined functions, numer-
ical values, constants, simulator output like v(n1) or i(vdb), parameters predefined by a .param
statement, and the variables hertz, temper, and time.
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Internally expression is replaced by an internally generated voltage node, which is the output
of a B source, one node and B source per par(’...’). Several par(’...’) are allowed in each line,
up to 99 per input file. The internal nodes are named pa_00 to pa_99. If your input file already
contains such node names, an error will occur, unless you rename these nodes.

In .four, .plot, .print, .save, but not in .measure, an alternative syntax
output=par(’expression’) is possible. par(’expression’) may be used as described
above. output is the name of the new node to replace the expression. So output has to be
unique and a valid node name.

The syntax of output=par(’expression’) is strict, no spaces between par and (’, or between
( and ’ are allowed, (’ and ’) both are required. Also there is not much error checking on your
input, if there is a typo, for example, an error may pop up at an unexpected place.

15.6.7 .width

Set the width of a print-out or plot with the following card:

.with out = 256

Parameter out yields the maximum number of characters plotted in a row, if printing in columns
or an ASCII-plot is selected.



Chapter 16

Starting ngspice

16.1 Introduction

Ngspice consists of the simulator and a front-end for data analysis and plotting. Input to the
simulator is a netlist file, including commands for circuit analysis and output control. Interactive
ngspice can plot data from a simulation on a PC or a workstation display.

Ngspice on LINUX (and OSs like Cygwin, BCD, Solaris ...) uses the X Window System for
plotting (see chapter 18.3) if the environment variable DISPLAY is available. Otherwise, a con-
sole mode (non-graphical) interface is used. If you are using X on a workstation, the DISPLAY
variable should already be set; if you want to display graphics on a system different from the
one you are running ngspice or ngutmeg on, DISPLAY should be of the form "machine:0.0".
See the appropriate documentation on the X Window System for more details.

The MS Windows versions of ngspice and ngnutmeg will have a native graphics interface (see
chapter 18.1).

The front-end may be run as a separate "stand-alone" program under the name ngnutmeg. ngnut-
meg is a subset of ngspice dedicated to data evaluation, still made available for historical rea-
sons. Ngnutmeg will read in the "raw" data output file created by ngspice -r or by the write
command during an interactive ngspice session.

16.2 Where to obtain ngspice

The actual distribution of ngspice may be downloaded from the ngspice download web page.
The installation for LINUX or MS Windows is described in the file INSTALL to be found in
the top level directory. You may also have a look at chapter 32 of this manual for compiling
instructions.

If you want to check out the source code which is actually under development, you may have
a look at the ngspice source code repository, which is stored using the Git Source Code Man-
agement (SCM) tool. The Git repository may be browsed on the Git web page, also useful for
downloading individual files. You may however download (or clone) the complete repository in-
cluding all source code trees from the console window (LINUX, CYGWIN or MSYS/MINGW)
by issuing the command (in a single line)

255

http://sourceforge.net/projects/ngspice/files/
http://sourceforge.net/scm/?type=git&group_id=38962
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git clone git://ngspice.git.sourceforge.net/gitroot/ngspice/ngspice

You need to have Git installed, which is available for all three OSs. The whole source tree
is then available in <current directory>/ngspice. Compilation and local installation is again
described in INSTALL (or chapter 32). If you later want to update your files and download the
recent changes from sourceforge into your local repository, cd into the ngspice directory and
just type

git pull

git pull will deny to overwrite modified files in your working directory. To drop your local
changes first, you can run

git reset --hard

To learn more about git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation which has pointers to docu-
mentation and tutorials.

16.3 Command line options for starting ngspice and ngnut-
meg

Command Synopsis:

n g s p i c e [ −o l o g f i l e ] [ −r r a w f i l e ] [ −b ] [ − i ] [ i n p u t f i l e . . . ]
ngnutmeg [ − ] [ d a t a f i l e . . . ]

Options are:

http://git-scm.com/
http://git-scm.com/documentation
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Option Long option Meaning
- Don’t try to load the default data file ("rawspice.raw") if no

other files are given (ngnutmeg only).
-n –no-spiceinit Don’t try to source the file ".spiceinit" upon start-up.

Normally ngspice and ngnutmeg try to find the file in the
current directory, and if it is not found then in the user’s
home directory (obsolete).

-t TERM –terminal=TERM The program is being run on a terminal with mfb name
term (obsolete).

-b –batch Run in batch mode. Ngspice reads the default input source
(e.g. keyboard) or reads the given input file and performs
the analyses specified; output is either Spice2-like
line-printer plots ("ascii plots") or a ngspice rawfile. See
the following section for details. Note that if the input
source is not a terminal (e.g. using the IO redirection
notation of "<") ngspice defaults to batch mode (-i
overrides). This option is valid for ngspice only.

-s –server Run in server mode. This is like batch mode, except that a
temporary rawfile is used and then written to the standard
output, preceded by a line with a single "@", after the
simulation is done. This mode is used by the ngspice
daemon. This option is valid for ngspice only.
Example for using pipes from the console window:
cat adder.cir|ngspice -s|more

-i –interactive Run in interactive mode. This is useful if the standard input
is not a terminal but interactive mode is desired. Command
completion is not available unless the standard input is a
terminal, however. This option is valid for ngspice only.

-r FILE –rawfile=FILE Use rawfile as the default file into which the results of the
simulation are saved. This option is valid for ngspice only.

-p –pipe Allow a program (e.g., xcircuit) to act as a GUI frontend
for ngspice through a pipe. Thus ngspice will assume that
the input pipe is a tty and allows to run in interactive mode.

-o FILE –output=FILE All logs generated during a batch run (-b) will be saved in
outfile.

-h –help A short help statement of the command line syntax.
-v –version Prints a version information.
-a –autorun Start simulation immediately, as if a control section

.control
run
.endc
had been added to the input file.

–soa-log=FILE output from Safe Operating Area (SOA) check

Further arguments to ngspice are taken to be ngspice input files, which are read and saved (if
running in batch mode then they are run immediately). Ngspice accepts Spice3 (and also most
Spice2) input files, and outputs ASCII plots, Fourier analyses, and node printouts as specified
in .plot, .four, and .print cards. If an out parameter is given on a .width card (15.6.7),
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the effect is the same as set width = .... Since ngspice ASCII plots do not use multiple ranges,
however, if vectors together on a .plot card have different ranges they do not provide as much
information as they do in a scalable graphics plot.

For ngnutmeg, further arguments are taken to be data files in binary or ASCII raw file format
(generated with -r in batch mode or the write (see 17.5.86) command) which are loaded into
ngnutmeg. If the file is in binary format, it may be only partially completed (useful for exam-
ining output before the simulation is finished). One file may contain any number of data sets
from different analyses.

16.4 Starting options

16.4.1 Batch mode

Let’s take as an example the Four-Bit binary adder MOS circuit shown in chapter 21.6, stored
in a file adder-mos.cir. You may start the simulation immediately by calling

ngspice -b -r adder.raw -o adder.log adder-mos.cir

ngspice will start, simulate according to the .tran command and store the output data in a rawfile
adder.raw. Comments, warnings and infos go to log file adder.log. Commands for batch mode
operation are described in chapt. 15.

16.4.2 Interactive mode

If you call

ngspice

ngspice will start, load spinit (16.5) and .spiceinit (16.6, if available), and then waits for your
manual input. Any of the commands described in 17.5 may be chosen, but many of them are
useful only after a circuit has been loaded by

ngspice 1 -> source adder-mos.cir

others require the simulation being done already (e.g. plot):

ngspice 2 ->run
ngspice 3 ->plot allv

If you call ngspice from the command line with a circuit file as parameter:

ngspice adder-mos.cir

ngspice will start, load the circuit file, parse the circuit (same circuit file as above, containing
only dot commands (see chapt. 15) for analysis and output control). ngspice then just waits for
your input. You may start the simulation by issuing the run command. Following completion
of the simulation you may analyze the data by any of the commands given in chapter 17.5.
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16.4.3 Control mode (Interactive mode with control file or control sec-
tion)

If you add the following control section to your input file adder-mos.cir, you may call

ngspice adder-mos.cir

from the command line and see ngspice starting, simulating and then plotting immediately.

Control section:

* ADDER − 4 BIT ALL−NAND−GATE BINARY ADDER
. c o n t r o l
s e t n o a s k q u i t
s ave vcc # b ra nc h
run
p l o t vcc # b r a nc h
r u s a g e a l l
. endc

Any suitable command listed in chapter 17.5 may be added to the control section, as well as
control structures described in chapter 17.6. Batch-like behavior may be obtained by changing
the control section to

Control section with batch-like behavior:

* ADDER − 4 BIT ALL−NAND−GATE BINARY ADDER
. c o n t r o l
s e t n o a s k q u i t
s ave vcc # b ra nc h
run
w r i t e a d d e r . raw vcc # b ra nc h
q u i t
. endc

If you put this control section into a file, say adder-start.sp, you may just add the line

.include adder-start.sp

to your input file adder-mos.cir to obtain the batch-like behavior. In the following example the
line .tran ... from the input file is overridden by the tran command given in the control
section.

Control section overriding the .tran command:

* ADDER − 4 BIT ALL−NAND−GATE BINARY ADDER
. c o n t r o l
s e t n o a s k q u i t
s ave vcc # b ra nc h
t r a n 1n 500n
p l o t vcc # b r a nc h
r u s a g e a l l
. endc
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The commands within the .control section are executed in the order they are listed and only
after the circuit has been read in and parsed. If you want to have a command being executed
before circuit parsing, you may use the prefix pre_ (17.5.44) to the command.

A warning is due however: If your circuit file contains such a control section (.control ... .endc),
you should not start ngspice in batch mode (with -b as parameter). The outcome may be unpre-
dictable!

16.5 Standard configuration file spinit

Upon start up ngspice reads its configuration file spinit. spinit may be found in
C:\Spice\share\ngspice\scripts (Windows) or /usr/local/share/ngspice/scripts (LINUX). The path
may be overridden by setting the environmental variable SPICE_SCRIPTS to a path where
spinit is located. ngspice for Windows will also search for spinit in the directory where
ngspice.exe resides. If spinit is not found, a warning message is issued, but ngspice will
continue (but of course without code models etc.).

Standard spinit contents:

* S t a n d a r d n g s p i c e i n i t f i l e
a l i a s e x i t q u i t
a l i a s a c c t r u s a g e a l l
s e t x 1 1 l i n e a r a r c s
* s e t r n d s e e d =12
* s e t f i l e t y p e = a s c i i
* s e t ngdebug

* u n s e t b r i e f

s t r c mp _ _ f l a g $program " n g s p i c e "
i f $ _ _ f l a g = 0

* For SPICE2 POLYs , e d i t t h e below l i n e t o p o i n t t o t h e l o c a t i o n
* of your codemodel .

codemodel C : / S p i c e / l i b / s p i c e / s p i c e 2 p o l y . cm

* The o t h e r codemodels
codemodel C : / S p i c e / l i b / s p i c e / a n a l o g . cm
codemodel C : / S p i c e / l i b / s p i c e / d i g i t a l . cm
codemodel C : / S p i c e / l i b / s p i c e / x t r a d e v . cm
codemodel C : / S p i c e / l i b / s p i c e / x t r a e v t . cm

end
u n s e t _ _ f l a g

spinit contains a script which is run upon start up of ngspice. You may find details of scripting in
the next chapter. Aliases (name equivalences) are set. set filetype=ascii will yield ASCII
output in the output data file (rawfile), a more compact binary format is used otherwise. The
asterisk ’*’ will comment out this line. If used by ngspice, spinit will then load the XSPICE code
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models from their absolute paths. You may also define relative paths here. set ngdebug will
yield a lot of additional debug output. Any other contents of the script. e.g. plotting preferences,
may be included here and started automatically by ngspice. The compatibility mode of ngspice
has to be set in spinit by set ngbehavior=all.

If the standard path for the libraries (see standard spinit above or /usr/local/lib/spice un-
der CYGWIN and LINUX) is not adequate, you may add for example the ./configure options
--prefix=/usr --libdir=/usr/lib64 to set the codemodel search path to /usr/lib64/spice.
Besides the standard lib only lib64 is acknowledged.

16.6 User defined configuration file .spiceinit

In addition to spinit you may define a file .spiceinit and put it into the current directory
or in your home directory. This file will be read in and executed after spinit, but before any
other input file is read. It may contain any script and override the commands given in spinit.
If the command line option -n is used upon ngspice start up, this file will be ignored.

16.7 Environmental variables

16.7.1 Ngspice specific variables

SPICE_LIB_DIR default: /usr/local/share/ngspice (LINUX, CYGWIN), C:\Spice\share\ngspice
(Windows)

SPICE_EXEC_DIR default: /usr/local/bin (LINUX, CYGWIN), C:\Spice\bin (Windows)

SPICE_BUGADDR default: http://ngspice.sourceforge.net/bugrep.html
Where to send bug reports on ngspice.

SPICE_EDITOR default: vi (LINUX, CYGWIN), notepad.exe (MINGW, Visual Studio)
Set the editor called in the edit command. Always overrides the EDITOR env. variable.

SPICE_ASCIIRAWFILE default: 0
Format of the rawfile. 0 for binary, and 1 for ascii.

SPICE_NEWS default: $SPICE_LIB_DIR/news
A file which is copied verbatim to stdout when ngspice starts in interactive mode.

SPICE_HELP_DIR default: $SPICE_LIB_DIR/helpdir
Help directory, not used in Windows mode

SPICE_HOST default: empty string
Used in the rspice command (probably obsolete, to be documented)

SPICE_SCRIPTS default: $SPICE_LIB_DIR/scripts
In this directory the spinit file will be searched.

SPICE_PATH default: $SPICE_EXEC_DIR/ngspice
Used in the aspice command (probably obsolete, to be documented)
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NGSPICE_MEAS_PRECISION default: 5
Sets the number of digits if output values are printed by the meas(ure) command.

SPICE_NO_DATASEG_CHECK default: undefined
If defined, will suppress memory resource info (probably obsolete, not used on Windows
or where the /proc information system is available.)

NGSPICE_INPUT_DIR default: undefined
If defined, using a valid directory name„ will add the given directory to the search path
when looking for input files (*.cir, *.inc, *.lib).

16.7.2 Common environment variables

TERM LINES COLS DISPLAY HOME PATH EDITOR SHELL POSIXLY_CORRECT

16.8 Memory usage

Ngspice started with batch option (-b) and rawfile output (-r rawfile) will store all simulation
data immediately into the rawfile without keeping them in memory. Thus very large circuits
may be simulated, the memory requested upon ngspice start up will depend on the circuit size,
but will not increase during simulation.

If you start ngspice in interactive mode or interactively with control section, all data will be kept
in memory, to be available for later evaluation. A large circuit may outgrow even Gigabytes of
memory. The same may happen after a very long simulation run with many vectors and many
time steps to be stored. Issuing the save <nodes> command will help to reduce memory
requirements by saving only the data defined by the command.

16.9 Simulation time

Simulating large circuits may take an considerable amount of CPU time. If this is of importance,
you should compile ngspice with the flags for optimum speed, set during configuring ngspice
compilation. Under LINUX, MINGW, and CYGWIN you should select the following option to
disable the debug mode, which slows down ngspice:

./configure --disable-debug

Adding --disable-debug will set the -O2 optimization flag for compiling and linking.

Under MS Visual Studio, you will have to select the release version which includes optimization
for speed.

If you have selected XSPICE (see chapters 12 and II) as part of your compilation configuration
(by adding the option --enable-xspice to your ./configure command), the value of trtol
(see 15.1.4) is set internally to 1 (instead of default 7) for higher precision if XSPICE code
model ’A’ devices included in the circuit. This may double or even triple the CPU time needed
for any transient simulation, because the amount of time steps and thus iteration steps is more
than doubled. For MS Visual Studio compilation there is currently no simple way to exclude
XSPICE during compilation.
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You may enforce higher speed during XSPICE usage by setting the variable xtrtol in your
.spiceinit initialization file or in the .control section in front of the tran command (via set
xtrtol=2 using the set command 17.5.57) and override the above trtol reduction. Beware
however of precision or convergence issues if you use XSPICE ’A’ devices, especially if xtrtol
is set to values larger than 2.

If your circuit comprises mostly of MOS transistors, and you have a multi-core processor at
hand, you may benefit from OpenMP parallel processing, as described next (16.10).

16.10 Ngspice on multi-core processors using OpenMP

16.10.1 Introduction

Today’s computers typically come with CPUs having more than one core. It will thus be useful
to enhance ngspice to make use of such multi-core processors.

Using circuits comprising mostly of transistors and e.g. the BSIM3 model, around 2/3 of the
CPU time is spent in evaluating the model equations (e.g. in the BSIM3Load() function). The
same happens with other advanced transistor models. Thus this function should be paralleled, if
possible. Resulting from that the parallel processing has to be within a dedicated device model.
Interestingly solving the matrix takes only about 10% of the CPU time, so paralleling the matrix
solver is of secondary interest here!

A recent publication [1] has described a way to exactly do that using OpenMP, which is available
on many platforms and is easy to use, especially if you want to parallel processing of a for-loop.

I have chosen the BSIM3 version 3.3.0 model, located in the BSIM3 directory, as the first
example. The BSIM3load() function in b3ld.c contains two nested for-loops using linked lists
(models and instances, e.g. individual transistors). Unfortunately OpenMP requires a loop with
an integer index. So in file B3set.c an array is defined, filled with pointers to all instances of
BSIM3 and stored in model->BSIM3InstanceArray.

BSIM3load() is now a wrapper function, calling the for-loop, which runs through functions
BSIM3LoadOMP(), once per instance. Inside BSIM3LoadOMP() the model equations are cal-
culated.

Typically you now need to synchronize the activities, in that storing the results into the matrix
has to be guarded. The trick offered by the authors now is that the storage is moved out of the
BSIM3LoadOMP() function. Inside BSIM3LoadOMP() the updated data are stored in extra
locations locally per instance, defined in bsim3def.h. Only after the complete for-loop is exer-
cised, the update to the matrix is done in an extra function BSIM3LoadRhsMat() in the main
thread after the paralleled loop. No extra synchronization is required.

Then the thread programming needed is only a single line!!

#pragma omp parallel for num_threads(nthreads) private(here)

introducing the for-loop.

This of course is made possible only thanks to the OpenMP guys and the clever trick on no
synchronization introduced by the above cited authors.

The time-measuring function getrusage() used with LINUX or Cygwin to determine the CPU
time usage (with the rusage option enabled) counts tics from every core, adds them up, and
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Table 16.1: OpenMP performance
Threads CPU time [s] CPU time [s]

Windows LINUX
1 (standard) 167 165
1 (OpenMP) 174 167

2 110 110
3 95 94-120
4 83 107
6 94 90
8 93 91

thus reports a CPU time value enlarged by a factor of 8 if 8 threads have been chosen. So now
ngspice is forced to use ftime for time measuring if OpenMP is selected.

16.10.2 Some results

Some results on an inverter chain with 627 CMOS inverters, running for 200ns, compiled with
Visual Studio professional 2008 on Windows 7 (full optimization) or gcc 4.4, SUSE LINUX
11.2, -O2, on a i7 860 machine with four real cores (and 4 virtuals using hyperthreading) are
shown in table 16.1.

So we see a ngspice speed up of nearly a factor of two! Even on an older notebook with dual
core processor, I have got more than 1.5x improvement using two threads. Similar results are to
be expected from BSIM4.

16.10.3 Usage

To state it clearly: OpenMP is installed inside the model equations of a particular model. So for
the moment it is available only in BSIM3 version 3.3.0, not in version 3.2.4 nor in any other
BSIM3 model, in BSIM4 versions 4.6.5 or 4.7, not in any other BSIM4 model, and in B4SOI,
version 4.3.1, not in any other SOI model. Older parameter files of version 4.6.x (x any number
up to 5) are accepted, you have to check for compatibility.

Under LINUX you may run

./autogen.sh

./configure ... --enable-openmp

make install

The same has been tested under MS Windows with CYGWIN and MINGW as well and deliv-
ers similar results.

Under MS Windows with Visual Studio Professional you have to place an additional pre-
processor flag USE_OMP, and then enable /openmp. Visual Studio Express is not sufficient
due to lack of OpenMP support. Even Visual Studio Professional lacks debugging support
for OpenMP. There are local preprocessor flags (USE_OMP3 in bsim3def.h, USE_OMP4 in
bsim4def.h, and USE_OMP4SOI in b4soidef.h) which you may modify individually if you
want to switch off OpenMP in only one of the models BSIM3, BSIM4, or B4SOI.
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The number of threads has to be set manually by placing

set num_threads=4

into spinit or .spiceinit. If OpenMP is enabled, but num_threads not set, a default value num_threads=2
is set internally.

If you run a circuit, please keep in mind to select BSIM3 (levels 8, 49) version 3.3.0 (11.2.9),
by placing this version number into your parameter files, BSIM4 (levels 14, 54) version 4.6.5
or 4.7 (11.2.10), or B4SOI (levels 10, 58) version 4.3.1 (11.2.12).

If you run ./configure without --enable-openmp (or without USE_OMP preprocessor flag
under MS Windows), you will get the standard, not paralleled BSIM3 and BSIM4 model, as
has been available from Berkeley. If OpenMP is selected and the number of threads set to 1,
there will be only a very slight CPU time disadvantage (typ. 3%) compared to the standard, non
OpenMP build.

16.10.4 Literature

[1] R.K. Perng, T.-H. Weng, and K.-C. Li: "On Performance Enhancement of Circuit Simulation
Using Multithreaded Techniques", IEEE International Conference on Computational Science
and Engineering, 2009, pp. 158-165

16.11 Server mode option -s

A program may write the spice input to the console. This output is redirected to ngspice via ’|’.
ngspice called with the -s option writes its output to the console, which again is redirected to a
receiving program by ’|’. In the following simple example cat reads the input file and prints it
content to the console, which is redirected to ngspice by a first pipe, ngspice transfers its output
(similar to a raw file, see below) to less via another pipe.

Example command line:

c a t i n p u t . c i r | n g s p i c e −s | l e s s

Under MS Windows you will need to compile ngspice as a console application (see chapt.
32.2.5) for this server mode usage.

Example input file:

t e s t −s
v1 1 0 1
r1 1 0 2k
. o p t i o n s f i l e t y p e = a s c i i
. s ave i ( v1 )
. dc v1 −1 1 0 . 5
. end

If you start ngspice console with

ngspice -s
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you may type in the above circuit line by line (not to forget the first line, which is a title and
will be ignored). If you close your input with ctrl Z, and return, you will get the following
output (this is valid for MINGW only) on the console, like a raw file:

Circuit: test -s

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

Title: test -s
Date: Sun Jan 15 18:57:13 2012
Plotname: DC transfer characteristic
Flags: real
No. Variables: 2
No. Points: 0
Variables:
No. of Data Columns : 2
0 v(v-sweep) voltage
1 i(v1) current
Values:
0 -1.000000000000000e+000

5.000000000000000e-004
1 -5.000000000000000e-001

2.500000000000000e-004
2 0.000000000000000e+000

0.000000000000000e+000
3 5.000000000000000e-001

-2.500000000000000e-004
4 1.000000000000000e+000

-5.000000000000000e-004
@@@ 122 5

The number 5 of the last line @@@ 122 5 shows the number of data points, which is missing in
the above line No. Points: 0 because at the time of writing to the console it has not yet
been available.

ctrl Z is not usable here in LINUX, a patch to install ctrl D instead is being evaluated.

16.12 Ngspice control via input, output fifos

The following bash script (under LINUX)

- launches ngspice in another thread.

- writes some commands in ngspice input

- reads the output and prints them on the console.
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Example:

# ! / u s r / b i n / env bash

NGSPICE_COMMAND=" n g s p i c e "

rm i n p u t . f i f o
rm o u t p u t . f i f o

mk f i fo i n p u t . f i f o
mk f i fo o u t p u t . f i f o

$NGSPICE_COMMAND −p − i < i n p u t . f i f o > o u t p u t . f i f o &

exec 3> i n p u t . f i f o
echo " I can w r i t e t o i n p u t . f i f o "

echo " S t a r t p r o c e s s i n g . . . "
echo " "

echo " s o u r c e c i r c u i t . c i r " >&3
echo " s e t n o a s k q u i t " >&3
echo " s e t nobreak " >&3
echo " t r a n 0 . 0 1 ms 0 . 1 ms">&3
echo " p r i n t n0 " >&3
echo " q u i t " >&3

echo " Try t o open o u t p u t . f i f o . . . "
exec 4< o u t p u t . f i f o
echo " I can r e a d from o u t p u t . f i f o "

echo " Ready t o r e a d . . . "
w h i l e r e a d o u t p u t
do

echo $ o u t p u t
done <&4

exec 3>&−
exec 4>&−

echo " End p r o c e s s i n g "

The input file for spice is:
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Circuit.cir:

* C i r c u i t . c i r
V1 n0 0 SIN (0 10 1kHz )
C1 n1 n0 3 . 3 nF
R1 0 n1 1k
. end

16.13 Compatibility

ngspice is a direct derivative of spice3f5 from UC Berkeley and thus inherits all of the com-
mands available in its predecessor. Thanks to the open source policy of UCB (original spice3
from 1994 is still available here), several commercial variants have sprung off, either being more
dedicated to IC design or more concentrating on simulating discrete and board level electronics.
None of the commercial and almost none of the freely downloadable spice providers publishes
the source code. All of them have proceeded with the development, by adding functionality, or
by adding a more dedicated user interface. Some have kept the original spice syntax for their
netlist description, others have quickly changed some if not many of the commands, functions
and procedures. Thus it is difficult, if not impossible, to offer a simulator which acknowledges
all of these netlist dialects. ngspice includes some features which enhance compatibility which
are included automatically. This selection may be controlled to some extend by setting the com-
patibility mode. Others may be invoked by the user by small additions to the netlist input file.
Some of them are listed in this chapter, some will be integrated into ngspice at a later stage,
others will be added if they are reported by users.

16.13.1 Compatibility mode

The variable (17.7) ngbehavior sets the compatibility mode. ’all’ is set as the default value.
’spice3’ as invoked by the command

set ngbehavior=spice3

in spinit or .spiceinit will disable some of the advanced ngspice features. ’ps’ will enable
including a library by a simple .lib <lib_filename> statement which is not compatible to
the more comfortable library handling described in chapt. 2.7.

16.13.2 Missing functions

You may add one or more function definitions to your input file, as listed below.

.func LIMIT(x,a,b) {min(max(x, a), b)}

.func PWR(x,a) {abs(x) ** a}

.func PWRS(x,a) {sgn(x) * PWR(x,a)}

.func stp(x) {u(x)}

http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm
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16.13.3 Devices

16.13.3.1 E Source with LAPLACE

see chapt. 5.2.5.

16.13.3.2 VSwitch

The VSwitch

S1 2 3 11 0 SW
.MODEL SW VSWITCH(VON=5V VOFF=0V RON=0.1 ROFF=100K)

may become

a1 11 (2 3) sw
.MODEL SW aswitch(cntl_off=0.0 cntl_on=5.0 r_off=1e5
+ r_on=0.1 log=TRUE)

The XSPICE option has to be enabled.

16.13.4 Controls and commands

16.13.4.1 .lib

The ngspice .lib command (see 2.7) requires two parameters, a file name followed by a library
name. If no library name is given, the line

.lib filename

should be replaced by

.inc filename

Alternatively, the compatibility mode (16.13.1) may be set to ’ps’.

16.13.4.2 .step

Repeated analysis in ngspice if offered by a short script inside of a .control section (see chapt.
17.8.7) added to the input file. A simple application (multiple dc sweeps) is shown below.
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Input file with parameter sweep

p a r a m e t e r sweep
* r e s i s t i v e d i v i d e r , R1 swept from s t a r t _ r t o s t o p _ r
* r e p l a c e s . STEP R1 1k 10k 1k

R1 1 2 1k
R2 2 0 1k

VDD 1 0 DC 1
. dc VDD 0 1 . 1

. c o n t r o l
l e t s t a r t _ r = 1k
l e t s t o p _ r = 10k
l e t d e l t a _ r = 1k
l e t r _ a c t = s t a r t _ r
* loop
w h i l e r _ a c t l e s t o p _ r

a l t e r r1 r _ a c t
run
w r i t e dc−sweep . o u t v ( 2 )
s e t a p p e n d w r i t e
l e t r _ a c t = r _ a c t + d e l t a _ r

end
p l o t dc1 . v ( 2 ) dc2 . v ( 2 ) dc3 . v ( 2 ) dc4 . v ( 2 ) dc5 . v ( 2 )
+ dc6 . v ( 2 ) dc7 . v ( 2 ) dc8 . v ( 2 ) dc9 . v ( 2 ) dc10 . v ( 2 )
. endc

. end

16.14 Tests

The ngspice distribution is accompanied by a suite of test input and output files, located in the
directory ngspice/tests. Originally this suite was meant to see if ngspice with all models
was made and installed properly. It is started by

$ make check

from within your compilation and development shell. A sequence of simulations is thus started,
its outputs compared to given output files by comparisons string by string. This feature is
momentarily used only to check for the BSIM3 model (11.2.9) and the XSPICE extension (12).
Several other input files located in directory ngspice/tests may serve as light-weight examples
for invoking devices and simple circuits.

Today’s very complex device models (BSIM4 (see 11.2.10), HiSIM (see 11.2.14) and others)
require a different strategy for verification. Under development for ngspice is the CMC Regres-
sion test by Colin McAndrew, which accompanies every new model. A major advantage is the
scalability of the diff comparisons, which check for equality within a given tolerance. A set of
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Perl modules cares for input, output and comparisons of the models. Currently BSIM4, BSIM-
SOI4, HiSIM, and HiSIMHV models implement the new test. You may invoke it by running
the command given above or by

$ make -i check 2>&1 | tee results

-i will make make to ignore any errors, tee will provide console output as well as printing to
file ’results’. Be aware that under MS Windows you will need the console binary (see 32.2.5)
to run the CMC tests, and you have to have Perl installed!

16.15 Reporting bugs and errors

Ngspice is a complex piece of software. The source code contains over 1500 files. Various
models and simulation procedures are provided, some of them not used and tested intensively.
Therefore errors may be found, some still evolving from the original spice3f5 code, others
introduced during the ongoing code enhancements.

If you happen to experience an error during the usage of ngspice, please send a report to the
development team. Ngspice is hosted on sourceforge, the preferred place to post a bug report is
the ngspice bug tracker. We would prefer to have your bug tested against the actual source code
available at Git, but of course a report using the most recent ngspice release is welcome! Please
provide the following information with your report:

Ngspice version

Operating system

Small input file to reproduce the bug

Actual output versus the expected output

http://sourceforge.net/tracker/?group_id=38962&atid=423915
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Chapter 17

Interactive Interpreter

17.1 Introduction

The simulation flow in ngspice (input, simulation, output) may be controlled by dot commands
(see chapt. 15 and 16.4.1) in batch mode. There is, however, a much more powerful control
scheme available in ngspice, traditionally coined “Interactive Interpreter”, but being much more
than just that. In fact there are several ways to use this feature, truly interactively by typing
commands to the input, but also running command sequences as scripts or as part of your input
deck in a quasi batch mode.

You may type in expressions, functions (17.2) or commands (17.5) into the input console to
elaborate on data already achieved from the interactive simulation session.

Sequences of commands, functions and control structures (17.6) may be assembled as a script
(17.8) into a file, and then activated by just typing the file name into the console input of an
interactive ngspice session.

Finally, and most useful, is it to add a script to the input file, in addition the the netlist and dot
commands. This is achieved by enclosing the script into .control ... .endc (see 16.4.3,
and 17.8.7 for an example). This feature enables a wealth of control options. You may set
internal (17.7) and other variables, start a simulation, evaluate the simulation output, start a new
simulation based on these data, and finally make use of many options for outputting the data
(graphically or into output files).

17.2 Expressions, Functions, and Constants

Ngspice and ngnutmeg store data in the form of vectors: time, voltage, etc. Each vector has a
type, and vectors can be operated on and combined algebraically in ways consistent with their
types. Vectors are normally created as the output of a simulation, or when a data file (output raw
file) is read in again (ngspice, ngnutmeg, see the load command 17.5.36), or when the initial
data-file is loaded directly into ngnutmeg. They can also be created with the let command
817.5.33).

An expression is an algebraic formula involving vectors and scalars (a scalar is a vector of
length 1) and the following operations:

273
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+ − * / ^ % ,

% is the modulo operator, and the comma operator has two meanings: if it is present in the
argument list of a user definable function, it serves to separate the arguments. Otherwise, the
term x , y is synonymous with x + j(y). Also available are the logical operations & (and),
| (or), ! (not), and the relational operations <, >, >=, <=, =, and <> (not equal). If used in an
algebraic expression they work like they would in C, producing values of 0 or 1. The relational
operators have the following synonyms:

Operator Synonym
gt >
lt <
ge >=
le <=
ne <>

and &
or |
not !
eq =

The operators are useful when < and > might be confused with the internal IO redirection (see
17.4, which is almost always happening). It is however safe to use < and > with the define
command (17.5.14).

The following functions are available:
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Name Function
mag(vector) Magnitude of vector (same as abs(vector)).
ph(vector) Phase of vector.
cph(vector) Phase of vector. Continuous values, no discontinuity at

±PI.
unwrap(vector) Phase of vector. Continuous values, no discontinuity at

±PI. Real phase vector in degrees as input.
j(vector) i(sqrt(-1)) times vector.

real(vector The real component of vector.
imag(vector) The imaginary part of vector.
db(vector) 20 log10(mag(vector)).
log(vector) The logarithm (base 10) of vector.
ln(vector) The natural logarithm (base e) of vector.

exp(vector) e to the vector power.
abs(vector) The absolute value of vector (same as mag).
sqrt(vector) The square root of vector.
sin(vector) The sine of vector.
cos(vector) The cosine of vector.
tan(vector) The tangent of vector.
atan(vector) The inverse tangent of vector.
sinh(vector) The hyperbolic sine of vector.
cosh(vector) The hyperbolic cosine of vector.
tanh(vector) The hyperbolic tangent of vector.
floor(vector) Largest integer that is less than or equal to vector.
ceil(vector) Smallest integer that is greater than or equal to vector.

norm(vector) The vector normalized to 1 (i.e, the largest magnitude of
any component is 1).

mean(vector) The result is a scalar (a length 1 vector) that is the mean of
the elements of vector (elements values added, divided by
number of elements).

avg(vector) The average of a vector.
Returns a vector where each element is the mean of the
preceding elements of the input vector (including the
actual element).

group_delay(vector) Calculates the group delay -dphase[rad]/dw[rad/s]. Input is
the complex vector of a system transfer function versus
frequency, resembling damping and phase per frequency
value. Output is a vector of group delay values (real values
of delay times) versus frequency.

vector(number) The result is a vector of length number, with elements 0, 1,
... number - 1. If number is a vector then just the first
element is taken, and if it isn’t an integer then the floor of
the magnitude is used.

unitvec(number) The result is a vector of length number, all elements having
a value 1.
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Name Function
length(vector) The length of vector.

interpolate(plot.vector) The result of interpolating the named vector onto the scale
of the current plot. This function uses the variable
polydegree to determine the degree of interpolation.

deriv(vector) Calculates the derivative of the given vector. This uses
numeric differentiation by interpolating a polynomial and
may not produce satisfactory results (particularly with
iterated differentiation). The implementation only
calculates the derivative with respect to the real component
of that vector’s scale.

vecd(vector) Compute the differential of a vector.
vecmin(vector) Returns the value of the vector element with minimum

value. Same as minimum.
minimum(vector) Returns the value of the vector element with minimum

value. Same as vecmin.
vecmax(vector) Returns the value of the vector element with maximum

value. Same as maximum.
maximum(vector) Returns the value of the vector element with maximum

value. Same as vecmax.
fft(vector) fast fourier transform (17.5.24)
ifft(vector) inverse fast fourier transform (17.5.24)

sortorder(vector) Returns a vector with the positions of the elements in a real
vector after they have been sorted into increasing order
using a stable method (qsort).

Several functions offering statistical procedures are listed in the following table:
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Name Function
rnd(vector) A vector with each component a random integer between 0

and the absolute value of the input vector’s corresponding
integer element value.

sgauss(vector) Returns a vector of random numbers drawn from a
Gaussian distribution (real value, mean = 0 , standard
deviation = 1). The length of the vector returned is
determined by the input vector. The contents of the input
vector will not be used. A call to sgauss(0) will return a
single value of a random number as a vector of length 1..

sunif(vector) Returns a vector of random real numbers uniformly
distributed in the interval [-1 .. 1[. The length of the vector
returned is determined by the input vector. The contents of
the input vector will not be used. A call to sunif(0) will
return a single value of a random number as a vector of
length 1.

poisson(vector) Returns a vector with its elements being integers drawn
from a Poisson distribution. The elements of the input
vector (real numbers) are the expected numbers l.
Complex vectors are allowed, real and imaginary values
are treated separately.

exponential(vector) Returns a vector with its elements (real numbers) drawn
from an exponential distribution. The elements of the input
vector are the respective mean values (real numbers).
Complex vectors are allowed, real and imaginary values
are treated separately.

An input vector may be either the name of a vector already defined or a floating-point number
(a scalar). A scalar will result in an output vector of length 1. A number may be written in
any format acceptable to ngspice, such as 14.6Meg or -1.231e-4. Note that you can either use
scientific notation or one of the abbreviations like MEG or G, but not both. As with ngspice, a
number may have trailing alphabetic characters.

The notation expr [num] denotes the num’th element of expr. For multi-dimensional vectors,
a vector of one less dimension is returned. Also for multi-dimensional vectors, the notation
expr[m][n] will return the nth element of the mth subvector. To get a subrange of a vector, use
the form expr[lower, upper]. To reference vectors in a plot that is not the current plot (see the
setplot command, below), the notation plotname.vecname can be used. Either a plotname or
a vector name may be the wildcard all. If the plotname is all, matching vectors from all plots
are specified, and if the vector name is all, all vectors in the specified plots are referenced. Note
that you may not use binary operations on expressions involving wildcards - it is not obvious
what all + all should denote, for instance. Thus some (contrived) examples of expressions are:

Expressions examples:

cos (TIME) + db ( v ( 3 ) )
s i n ( cos ( l o g ( [ 1 2 3 4 5 6 7 8 9 1 0 ] ) ) )
TIME * rnd ( v ( 9 ) ) − 15 * cos ( v i n # b r a nc h ) ^ [ 7 . 9 e5 8]
n o t ( ( ac3 . FREQ[ 3 2 ] & t r a n 1 . TIME [ 1 0 ] ) g t 3 )
( s u n i f ( 0 ) ge 0 ) ? 1 . 0 : 2 . 0
mag ( f f t ( v ( 1 8 ) ) )
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Vector names in ngspice may have look like @dname[param], where dname is either the name
of a device instance or of a device model. This vector contains the value of the param parameter
of the device or model. See Appendix, chapt. 31 for details of which parameters are available.
The value is a vector of length 1. This function is also available with the show command, and
is available with variables for convenience for command scripts.

There are a number of pre-defined constants in ngspice, which you may use by their name. They
are stored in plot (17.3) “const” and are listed in the table below:

Name Description Value
pi π 3.14159...
e e (the base of natural logarithms) 2.71828...
c c (the speed of light) 299,792,500 m/sec

i i (the square root of -1)
√
−1

kelvin (absolute zero in centigrade) -273.15◦C
echarge q (the charge of an electron) 1.60219e-19 C

boltz k (Boltzmann’s constant) 1.38062e-23J/K

planck h (Planck’s constant) 6.62620e-34
yes boolean 1
no boolean 0

TRUE boolean 1
FALSE boolean 0

These constants are all given in MKS units. If you define another variable with a name that
conflicts with one of these then it takes precedence.

Additional constants may be generated during circuit setup (see .csparam, 2.10).

17.3 Plots

The output vectors of any analysis are stored in plots, a traditional SPICE notion. A plot is a
group of vectors. A first tran command will generate several vectors within a plot tran1. A
subsequent tran command will store their vectors in tran2. Then a linearize command will
linearize all vectors from tran2 and store them in tran3, which then becomes the current plot. A
fft will generate a plot spec1, again now the current plot. The display command always will
show all vectors in the current plot. Echo $plots followed by Return lists all plots generated
so far. Setplot followed by Return will show all plots and ask for a (new) plot to become
current. A simple Return will end the command. Setplot name will change the current plot
to ’name’ (e.g. setplot tran2 will make tran2 the current plot). A sequence name.vector
may be used to access the vector from a foreign plot.

You may generate plots by yourself: setplot new will generate a new plot named unknown1,
set curplottitle=”a new plot” will set a title, set curplotname=myplot will set its
name as a short description, set curplotdate=”Sat Aug 28 10:49:42 2010” will set its
date. Note that strings with spaces have to be given with double quotes.

Of course the notion ’plot’ will be used by this manual also in its more common meaning,
denoting a graphics plot or being a plot command. Be careful to get the correct meaning.
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17.4 Command Interpretation

17.4.1 On the console

On the ngspice console window (or into the Windows GUI) you may directly type in any com-
mand from 17.5. Within a command sequence Input/output redirection is available (see chapt.
17.8.8 for an example) - the symbols >, >>, >&, >>&, and < have the same effects as in the
C-shell. This I/O-redirection is internal to ngspice commands, and should not be mixed up with
the “external” I/O-redirection offered by the usual shells (LINUX, MSYS etc.), see 17.5.62.
You may type multiple commands on one line, separated by semicolons.

17.4.2 Scripts

If a word is typed as a command, and there is no built-in command with that name, the directo-
ries in the sourcepath list are searched in order for a file with the name given by the word. If
it is found, it is read in as a command file (as if it were sourced). Before it is read, however, the
variables argc and argv are set to the number of words following the file-name on the com-
mand line, and a list of those words respectively. After the file is finished, these variables are
unset. Note that if a command file calls another, it must save its argv and argc since they are
altered. Also, command files may not be re-entrant since there are no local variables. Of course,
the procedures may explicitly manipulate a stack.... This way one can write scripts analogous
to shell scripts for ngnutmeg and ngspice.

Note that for the script to work with ngspice, it must begin with a blank line (or whatever else,
since it is thrown away) and then a line with .control on it. This is an unfortunate result
of the source command being used for both circuit input and command file execution. Note
also that this allows the user to merely type the name of a circuit file as a command and it is
automatically run. The commands are executed immediately, without running any analyses that
may be specified in the circuit (to execute the analyses before the script executes, include a
“run” command in the script).

There are various command scripts installed in /usr/local/lib/spice/scripts (or what-
ever the path is on your machine), and the default sourcepath includes this directory, so you
can use these command files (almost) like built-in commands.

17.4.3 Add-on to circuit file

The problably most common way to invoke the commands described in the following chapter
17.5 is to add a .control ... .endc section to the circuit input file (see 16.4.3).
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Example:

. c o n t r o l
p r e _ s e t s t r i c t _ e r r o r h a n d l i n g
u n s e t ngdebug
* save o u t p u t s and s p e c i a l s
s ave x1 . x1 . x1 . 7 V( 9 ) V( 1 0 ) V( 1 1 ) V( 1 2 ) V( 1 3 )
run
d i s p l a y
* p l o t t h e i n p u t s , use o f f s e t t o p l o t on t o p of each o t h e r
p l o t v ( 1 ) v ( 2 ) + 4 v ( 3 ) + 8 v (4 )+12 v (5 )+16 v (6 )+20 v (7 )+24 v (8 )+28
* p l o t t h e o u t p u t s , use o f f s e t t o p l o t on t o p of each o t h e r
p l o t v ( 9 ) v (10 )+4 v (11 )+8 v (12)+12 v (13)+16
. endc

17.5 Commands

Commands marked with a * are only available in ngspice, not in ngnutmeg.

17.5.1 Ac*: Perform an AC, small-signal frequency response analysis

General Form:

ac ( DEC | OCT | LIN ) N F s t a r t F s t o p

Do an small signal ac analysis (see also chapter 15.3.1) over the specified frequency range.

DEC decade variation, and N is the number of points per decade.

OCT stands for octave variation, and N is the number of points per octave.

LIN stands for linear variation, and N is the number of points.

fstart is the starting frequency, and fstop is the final frequency.

Note that in order for this analysis to be meaningful, at least one independent source must have
been specified with an ac value.

In this ac analysis all non-linear devices are linearized around their actual dc operating point.
All Ls and Cs get their imaginary value, depending on the actual frequency step. Each output
vector will be calculated relative to the input voltage (current) given by the ac value (Iin equals
to 1 in the example below). The resulting node voltages (and branch currents) are complex
vectors. Therefore you have to be careful using the plot command.
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Example:

* AC t e s t
I i n 1 0 AC 1
R1 1 2 100
L1 2 0 1

. c o n t r o l
AC LIN 101 10 10K
p l o t v ( 2 ) $ r e a l p a r t !
p l o t mag ( v ( 2 ) ) $ magni tude
p l o t db ( v ( 2 ) ) $ same as vdb ( 2 )
p l o t imag ( v ( 2 ) ) $ i m a g i n a r y p a r t o f v ( 2 )
p l o t r e a l ( v ( 2 ) ) $ same as p l o t v ( 2 )
p l o t phase ( v ( 2 ) ) $ phase i n r a d
p l o t cph ( v ( 2 ) ) $ phase i n rad , c o n t i n u o u s beyond p i
p l o t 180 / PI * phase ( v ( 2 ) ) $ phase i n deg
. endc
. end

In addition to the plot examples given above you may use the variants of vxx(node) described in
chapter 15.6.2 like vdb(2). An option to suppress OP analysis before AC may be set for linear
circuits (15.1.3).

17.5.2 Alias: Create an alias for a command

General Form:

a l i a s [ word ] [ t e x t . . . ]

Causes word to be aliased to text. History substitutions may be used, as in C-shell aliases.

17.5.3 Alter*: Change a device or model parameter

Alter changes the value for a device or a specified parameter of a device or model.

General Form:

a l t e r dev = < e x p r e s s i o n >
a l t e r dev param = < e x p r e s s i o n >
a l t e r @dev [ param ] = < e x p r e s s i o n >

<expression> must be real (complex isn’t handled right now, integer is fine though, but no
strings. For booleans, use 0/1.

Old style (pre 3f4):

a l t e r d e v i c e v a l u e
a l t e r d e v i c e p a r a m e t e r v a l u e [ p a r a m e t e r v a l u e ]

Using the old style, its first form is used by simple devices which have one principal value (re-
sistors, capacitors, etc.) where the second form is for more complex devices (bjt’s, etc.). Model
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parameters can be changed with the second form if the name contains a "#". For specifying a
list of parameters as values, start it with "[", followed by the values in the list, and end with "]".
Be sure to place a space between each of the values and before and after the "[" and "]".

Some examples are given below:

Examples (Spice3f4 style):

a l t e r vd = 0 . 1
a l t e r vg dc = 0 . 6
a l t e r @m1[w]= 15e−06
a l t e r @vg[ s i n ] [ −1 1 . 5 2MEG ]
a l t e r @Vi[ pwl ] = [ 0 1 . 2 100p 0 ]

alter may have vectors (17.8.2) or variables (17.8.1) as parameters.

Examples (vector or variable in parameter list):

a l t e r @vg[ s i n ] [ −1 1 . 5 $&newfreq ]
a l t e r @Vi[ pwl ] = [ 0 1 . 2 $newper iod 0 ]

You may change a parameter of a device residing in a subcircuit, e.g. of MOS transistor msub1
in subcircuit xm1 (see also chapt. 31.1).

Examples (parameter of device in subcircuit):

a l t e r m. xm1 . msub1 w = 20u
a l t e r @m. xm1 . msub1 [w] = 20u

17.5.4 Altermod*: Change model parameter(s)

General form:

a l t e r m o d mod param = < e x p r e s s i o n >
a l t e r m o d @mod[ param ] = < e x p r e s s i o n >

Example:

a l t e r m o d nc1 t o x = 10e−9
a l t e r m o d @nc1 [ t o x ] = 10e−9

Altermod operates on models and is used to change model parameters. The above example
will change the parameter tox in all devices using the model nc1, which is defined as

*** BSIM3v3 model
.MODEL nc1 nmos LEVEL=8 version = 3.2.2
+ acm = 2 mobmod = 1 capmod = 1 noimod = 1
+ rs = 2.84E+03 rd = 2.84E+03 rsh = 45
+ tox = 20E-9 xj = 0.25E-6 nch = 1.7E+17
+ ...

If you invoke the model by the MOS device

M1 d g s b nc1 w=10u l=1u
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you might also insert the device name M1 for mod as in

altermod M1 tox = 10e-9

The model parameter tox will be modified, however not only for device M1, but for all devices
using the associated MOS model nc1!

If you want to run corner simulations within a single simulation flow, the following option of
altermod may be of help. The parameter set with name modn may be overrun by the altermod
command specifying a model file. All parameter values fitting to the existing model which
is defined as modn will be modified. As usual the ’reset’ command (see 17.5.49) restores the
original values. The model file (see 2.3) has to use the standard specifications for an input file,
the .model section is the relevant part. However the first line in the model file will be ignored by
the input parser, so it should contain only some title information. The .model statement should
appear then in the second or any later line. More than one .model section may reside in the file.

General form:

a l t e r m o d mod1 [ mod2 . . mod15 ] f i l e = <model f i l e name>
a l t e r m o d mod1 [ mod2 . . mod15 ] f i l e <model f i l e name>

Example:

a l t e r m o d nch f i l e = BSIM3_nmos . mod
a l t e r m o d pch nch f i l e BSIM4_mos . mod

Be careful that the new model file corresponds to the existing model selected by modn. The ex-
isting models are defined during circuit setup at start up of ngspice. Models have been included
by .model statements (2.3) in your input file or included by the .include command. In the
example given above, the models nch (or nch and pch) have to be already available before call-
ing altermod. If they are not found in the active circuit, ngspice will terminate with an error
message. There is no checking however of the version and level parameters! So you have to
be responsible for offering model data of the same model level (e.g. level 8 for BSIM3). Thus
no new model is selectable by altermod, but the parameters of the existing model(s) may be
changed (partially, completely, temporarily).

17.5.5 Asciiplot: Plot values using old-style character plots

General Form:

a s c i i p l o t p l o t a r g s

Produce a line printer plot of the vectors. The plot is sent to the standard output, or you can
put it into a file with asciiplot args ... > file. The set options width, height, and nobreak
determine the width and height of the plot, and whether there are page breaks, respectively.
The ’more’ mode is the standard mode if printing to the screen, that is after a number of lines
given by height, and after a page break printing stops with request for answering the prompt
by <return>, ’c’ or ’q’. If everything shall be printed without stopping, put the command set
nomoremode into .spiceinit 16.6 (or spinit 16.5). Note that you will have problems if you try
to asciiplot something with an X-scale that isn’t monotonic (i.e, something like sin(TIME) ),
because asciiplot uses a simple-minded linear interpolation. The asciiplot command doesn’t
deal with log scales or the delta keywords.
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17.5.6 Aspice*: Asynchronous ngspice run

General Form:

a s p i c e i n p u t− f i l e [ o u t p u t− f i l e ]

Start an ngspice run, and when it is finished load the resulting data. The raw data is kept in
a temporary file. If output-file is specified then the diagnostic output is directed into that file,
otherwise it is thrown away.

17.5.7 Bug: Mail a bug report

General Form:

bug

Send a bug report. Please include a short summary of the problem, the version number and
name of the operating system that you are running, the version of ngspice that you are running,
and the relevant ngspice input file. (If you have defined BUGADDR, the mail is delivered to there.)

17.5.8 Cd: Change directory

General Form:

cd [ d i r e c t o r y ]

Change the current working directory to directory, or to the user’s home directory if none is
given.

17.5.9 Cdump: Dump the control flow to the screen

General Form:

cdump

Dumps the control sequence to the screen (all statements inside the .control ... .endc structure
before the line with cdump). Indentations show the structure of the sequence. The example
below is printed if you add cdump to /examples/Monte_Carlo/MonteCarlo.sp.
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Example (abbreviated):

l e t mc_runs =5
l e t run =0
. . .
d e f i n e a g a u s s ( nom , avar , s i g ) ( nom + a v a r / s i g * s g a u s s ( 0 ) )
d e f i n e l i m i t ( nom , a v a r ) ( nom + ( ( s g a u s s ( 0 ) >=0) ? a v a r : −a v a r ) )
dowhi l e run < mc_runs

a l t e r c1= u n i f (1 e−09 , 0 . 1 )
. . .

ac o c t 100 250k 10meg
meas ac bw t r i g vdb ( o u t ) v a l =−10 r i s e =1 t a r g vdb ( o u t ) v a l =−10 f a l l =1
s e t run =" $&run "

. . .
l e t run = run + 1

end
p l o t db ( { $ s c r a t c h } . a l l v )
echo
p r i n t { $ s c r a t c h } . bwh
cdump

17.5.10 Circbyline*: Enter a circuit line by line

General Form:

c i r c b y l i n e l i n e

Enter a circuit line by line. line is any circuit line, as found in the *.cir ngspice input files.
The first line is a title line. The entry will be finished by entering .end. Circuit parsing is then
started automatically.

Example:

c i r c b y l i n e t e s t c i r c u i t
c i r c b y l i n e v1 1 0 1
c i r c b y l i n e r1 1 0 1
c i r c b y l i n e . dc v1 0 . 5 1 . 5 0 . 1
c i r c b y l i n e . end
run
p l o t i ( v1 )

17.5.11 Codemodel*: Load an XSPICE code model library

General Form:

codemodel [ l i b r a r y f i l e ]

Load a XSPICE code model shared library file (e.g. analog.cm ...). Only available if ngspice is
compiled with the XSPICE option (–enable-xspice) or with the Windows executable distributed
since ngspice21. This command has to be called from spinit (see chapt. 16.5) (or .spiceinit for
personal code models, 16.6).
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17.5.12 Compose: Compose a vector

General Form:

compose name v a l u e s v a l u e 1 [ v a l u e 2 . . . ]
compose name parm = v a l [ parm = v a l . . . ]

The first form takes the values and creates a new vector, the values may be arbitrary expressions.

The second form has the following possible parameters:

start The value at which the vector should start.

stop The value at which the vector should end.

step The difference between successive elements.

lin The number of points, linearly spaced..

17.5.13 Dc*: Perform a DC-sweep analysis

General Form:

dc Source−Name V s t a r t Vstop Vinc r [ Source2 V s t a r t 2 Vstop2 Vincr2 ]

Do a dc transfer curve analysis. See the previous chapter 15.3.2 for more details. Several
options may be set (15.1.2).

17.5.14 Define: Define a function

General Form:

d e f i n e f u n c t i o n ( arg1 , arg2 , . . . ) e x p r e s s i o n

Define the user-definable function with the name function and arguments arg1, arg2, ... to be
expression, which may involve the arguments. When the function is later used, the arguments it
is given are substituted for the formal arguments when it is parsed. If expression is not present,
any definition for function is printed, and if there are no arguments to define then all currently
active definitions are printed. Note that you may have different functions defined with the same
name but different arities. Some useful definitions are:

Example:

d e f i n e max ( x , y ) ( x > y ) * x + ( x <= y ) * y
d e f i n e min ( x , y ) ( x < y ) * x + ( x >= y ) * y
d e f i n e l i m i t ( nom , a v a r ) ( nom + ( ( s g a u s s ( 0 ) >= 0) ? a v a r : −a v a r ) )

17.5.15 Deftype: Define a new type for a vector or plot

General Form:

d e f t y p e [ v | p ] typename ab b r ev



17.5. COMMANDS 287

defines types for vectors and plots. abbrev will be used to parse things like abbrev(name) and
to label axes with M<abbrev>, instead of numbers. It may be omitted. Also, the command
"deftype p plottype pattern ..." will assign plottype as the name to any plot with one of the
patterns in its Name: field.

Example:

d e f t y p e v c a p a c i t a n c e F
s e t t y p e c a p a c i t a n c e moscap
p l o t moscap vs v ( cc )

17.5.16 Delete*: Remove a trace or breakpoint

General Form:

d e l e t e [ debug−number . . . ]

Delete the specified saved nodes and parameters, breakpoints and traces. The debug numbers
are those shown by the status command (unless you do status > file, in which case the debug
numbers are not printed).

17.5.17 Destroy: Delete an output data set

General Form:

d e s t r o y [ p l o t n a m e s | a l l ]

Release the memory holding the output data (the given plot or all plots) for the specified runs.

17.5.18 Devhelp: information on available devices

General Form:

d e v h e l p [[− csv ] device_name [ p a r a m e t e r ] ]

Devhelp command shows the user information about the devices available in the simulator. If
called without arguments, it simply displays the list of available devices in the simulator. The
name of the device is the name used inside the simulator to access that device. If the user spec-
ifies a device name, then all the parameters of that device (model and instance parameters) will
be printed. Parameter description includes the internal ID of the parameter (id#), the name used
in the model card or on the instance line (Name), the direction (Dir) and the description of the
parameter (Description). All the fields are self-explanatory, except the “direction”. Direction
can be “in”, “out” or “inout” and corresponds to a “write-only”, “read-only” or a “read/write”
parameter. Read-only parameters can be read but not set, write only can be set but not read and
read/write can be both set and read by the user.

The “-csv” option prints the fields separated by a comma, for direct import into a spreadsheet.
This option is used to generate the simulator documentation.
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Example:

d e v h e l p
d e v h e l p r e s i s t o r
d e v h e l p c a p a c i t o r i c

17.5.19 Diff: Compare vectors

General Form:

d i f f p l o t 1 p l o t 2 [ vec . . . ]

Compare all the vectors in the specified plots, or only the named vectors if any are given. If
there are different vectors in the two plots, or any values in the vectors differ significantly,
the difference is reported. The variables diff_abstol, diff_reltol, and diff_vntol are used to
determine a significant difference.

17.5.20 Display: List known vectors and types

General Form:

d i s p l a y [ varname . . . ]

Prints a summary of currently defined vectors, or of the names specified. The vectors are sorted
by name unless the variable nosort is set. The information given is the name of the vector, the
length, the type of the vector, and whether it is real or complex data. Additionally, one vector
is labeled [scale]. When a command such as plot is given without a vs argument, this scale is
used for the X-axis. It is always the first vector in a rawfile, or the first vector defined in a new
plot. If you undefine the scale (i.e, let TIME = []), one of the remaining vectors becomes the
new scale (which one is unpredictable). You may set the scale to another vector of the plot with
the command setscale (17.5.60).

17.5.21 Echo: Print text

General Form:

echo [ t e x t . . . ] [ $ v a r i a b l e ] [ " $&v e c t o r " ]

Echos the given text, variable or vector to the screen. echo without parameters issues a blank
line.

17.5.22 Edit*: Edit the current circuit

General Form:

e d i t [ f i l e ]

Print the current ngspice input file into a file, call up the editor on that file and allow the user to
modify it, and then read it back in, replacing the original file. If a file-name is given, then edit
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that file and load it, making the circuit the current one. The editor may be defined in .spiceinit
or spinit by a command line like

set editor=emacs

Using MS Windows, to allow the edit command calling an editor, you will have to add the
editor’s path to the PATH variable of the command prompt windows (see here). edit then calls
cmd.exe with e.g. notepad++ and file as parameter, if you have set

set editor=notepad++.exe

to .spiceinit or spinit.

17.5.23 Eprint*: Print an event driven node (only used with XSPICE op-
tion)

General Form:

e p r i n t node [ node ]
e p r i n t node [ node ] > nodeou t . t x t ; o u t p u t r e d i r e c t e d

Print an event driven node generated or used by an XSPICE ’A’ device. These nodes are vectors
not organized in plots. See chapt. 27.2.2 for an example. Output redirection into a file is
available.

17.5.24 FFT: fast Fourier transform of vectors

General Form:

f f t v e c t o r 1 [ v e c t o r 2 ] . . .

This analysis provides a fast Fourier transform of the input vector(s) in forward direction. fft
is much faster than spec (17.5.69) (about a factor of 50 to 100 for larger vectors) !

The fft command will create a new plot consisting of the Fourier transforms of the vectors
given on the command line. Each vector given should be a transient analysis result, i.e. it should
have ‘time’ as a scale. You will have got these vectors by the tran Tstep Tstop Tstart
command.

The vector should have a linear equidistant time scale. Therefore linearization using the linearize
command is recommended before running fft. Be careful selecting a Tstep value small enough
for good interpolation, e.g. much smaller than any signal period to be resolved by fft (see
linearize command). The Fast Fourier Transform will be computed using a window func-
tion as given with the specwindow variable. A new plot named specx will be generated with
a new vector (having the same name as the input vector, see command above) containing the
transformed data.

Ngspice has two FFT implementations:

1. Standard code is based on the FFT function provided by John Green “FFTs for RISC 2.0”,
downloaded 2012, now to be found here. These are a power-of-two routines for fft and
ifft. If the input size doesn’t fit this requirement the remaining data will be zero padded
upto the next 2N field size. You have to take care of the correlated change in the scale
vector.

http://en.wikipedia.org/wiki/Environment_variable#Examples_of_DOS_environment_variables
http://hyperarchive.lcs.mit.edu/HyperArchive/Archive/dev/src/ffts-for-risc-2-c.hqx
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2. If available on the operating system (see Chapter 32) ngspice can be linked to the famous
FFTW-3 package, found here. This high performance package has advantages in speed
and accuracy compared to most of the freely available FFT libraries. It makes arbitrary
size transforms for even and odd data.

How to compute the fft from a transient simulation output:

n g s p i c e 8 −> s e t p l o t t r a n 1
n g s p i c e 9 −> l i n e a r i z e V( 2 )
n g s p i c e 9 −> s e t specwindow=blackman
n g s p i c e 10 −> f f t V( 2 )
n g s p i c e 11 −> p l o t mag (V( 2 ) )

Linearize will create a new vector V(2) in a new plot tran2. The command fft V(2) will
create a new plot spec1 with vector V(2) holding the resulting data.

The variables listed in the following table control operation of the fft command. Each can be
set with the set command before calling fft.

specwindow: This variable is set to one of the following strings, which will determine the
type of windowing used for the Fourier transform in the spec and fft command. If not set, the
default is "hanning".

none No windowing

rectangular Rectangular window

bartlet Bartlett (also triangle) window

blackman Blackman window

hanning Hanning (also hann or cosine) window

hamming Hamming window

gaussian Gaussian window

flattop Flat top window

http://www.fftw.org/
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Figure 17.1: Spec and FFT window functions (Gaussian order = 4)

specwindoworder: This can be set to an integer in the range 2-8. This sets the order when
the Gaussian window is used in the spec and fft commands. If not set, order 2 is used.

17.5.25 Fourier: Perform a Fourier transform

General Form:

f o u r i e r f u n d a m e n t a l _ f r e q u e n c y [ e x p r e s s i o n . . . ]

Fourier is used to analyse the output vector(s) of a preceeding transient analysis (see 17.5.77).
It does a Fourier analysis of each of the given values, using the first 10 multiples of the funda-
mental frequency (or the first nfreqs multiples, if that variable is set - see 17.7). The printed
output is like that of the .four ngspice line (chapter 15.6.4). The expressions may be any valid
expression (see 17.2), e.g. v(2). The evaluated expression values are interpolated onto a fixed-
space grid with the number of points given by the fourgridsize variable, or 200 if it is not set.
The interpolation is of degree polydegree if that variable is set, or 1. If polydegree is 0, then no
interpolation is done. This is likely to give erroneous results if the time scale is not monotonic,
though.

The fourier command not only issues a printout, but also generates vectors, one per expression.
The size of the vector is 3 x nfreqs (per default 3 x 10). The name of the new vector is fouriermn,
where m is set by the mth call to the fourier command, n is the nth expression given in the actual
fourier command. fouriermn[0] is the vector of the 10 (nfreqs) frequency values, fouriermn[1]
contains the 10 (nfreqs) magnitude values, fouriermn[2] the 10 (nfreqs) phase values of the
result.
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Example:

* do t h e t r a n s i e n t a n a l y s i s
t r a n 1n 1m
* do t h e f o u r i e r a n a l y s i s
f o u r i e r 3 . 3 4 e6 v ( 2 ) v ( 3 ) ; f i r s t c a l l
f o u r i e r 100 e6 v ( 2 ) v ( 3 ) ; second c a l l
* g e t i n d i v i d u a l v a l u e s
l e t newt1 = f o u r i e r 1 1 [ 0 ] [ 1 ]
l e t newt2 = f o u r i e r 1 1 [ 1 ] [ 1 ]
l e t newt3 = f o u r i e r 1 1 [ 2 ] [ 1 ]
l e t newt4 = f o u r i e r 1 2 [ 0 ] [ 4 ]
l e t newt5 = f o u r i e r 1 2 [ 1 ] [ 4 ]
l e t newt6 = f o u r i e r 1 2 [ 2 ] [ 4 ]
* p l o t magn i tude o f seccond e x p r e s s i o n ( v ( 3 ) )
* from f i r s t c a l l v e r s u s f r e q u e n c y
p l o t f o u r i e r 1 2 [ 1 ] vs f o u r i e r 1 2 [ 0 ]

The plot command from the example plots the vector of the magnitude values, obtained by
the first call to fourier and evaluating the first expression in this call, against the vector of the
frequency values.

17.5.26 Gnuplot: Graphics output via Gnuplot

General Form:

g n u p l o t f i l e p l o t a r g s

Like plot, but using gnuplot for graphics output and further data manipulation. ngspice creates
a file called file.plt containing the gnuplot command sequence, a file called file.data
containing the data to be plotted, and a file called file.eps containing a postscript hard-copy
of the plot. On LINUX gnuplot is called via xterm, which offers a gnuplot console to manipulate
the data. On Windows a plot window is opened, the gnuplot command console window is
available at a mouse click. Of course you have to have gnuplot installed properly on your
system. This option is tested with Gnuplot 4.6 (as of Jan 2014).

By setting the variable gnuplot_terminal inside the control section to png, gnuplot will
generate a file file.png containing a compressed bitmap ready to including in text-processing
programs like Word etc.

17.5.27 Hardcopy: Save a plot to a file for printing

General Form:

ha rdcopy f i l e p l o t a r g s

Just like plot, except that it creates a file called file containing the plot. The file is a postscript
image. As an alternative the plot(5) format is available by setting the hcopydevtype variable to
plot5, and can be printed by either the plot(1) program or lpr with the -g flag. See also chapter
18.6 for more details (color etc.).
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17.5.28 Help: Print summaries of Ngspice commands

Prints help. This help information, however, is spice3f5-like, stemming from 1991 and thus
is outdated. If commands are given, descriptions of those commands are printed. Otherwise
help for only a few major commands is printed. On Windows this help command is no longer
available. Spice3f5 compatible help may be found in the Spice 3 User manual. For ngspice
please use this manual.

17.5.29 History: Review previous commands

General Form:

h i s t o r y [ number ]

Print out the history, or the last number commands typed at the keyboard.

17.5.30 Inventory: Print circuit inventory

General Form:

i n v e n t o r y

This commands accepts no argument and simply prints the number of instances of a particular
device in a loaded netlist.

17.5.31 Iplot*: Incremental plot

General Form:

i p l o t [ node . . . ]

Incrementally plot the values of the nodes while ngspice runs. The iplot command can be used
with the where command to find trouble spots in a transient simulation.

The @name[param] notation (31.1) might not work yet.

17.5.32 Jobs*: List active asynchronous ngspice runs

General Form:

j o b s

Report on the asynchronous ngspice jobs currently running. Ngnutmeg checks to see if the
jobs are finished every time you execute a command. If it is done then the data is loaded and
becomes available.

http://newton.ex.ac.uk/teaching/CDHW/Electronics2/userguide/
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17.5.33 Let: Assign a value to a vector

General Form:

l e t name = expr

Creates a new vector called name with the value specified by expr, an expression as described
above. If expr is [] (a zero-length vector) then the vector becomes undefined. Individual ele-
ments of a vector may be modified by appending a subscript to name (ex. name[0]). If there are
no arguments, let is the same as display.

The command let creates a vector in the current plot, use setplot (17.5.59) to create a new plot.

See also unlet (17.5.81), compose (17.5.12).

17.5.34 Linearize*: Interpolate to a linear scale

General Form:

l i n e a r i z e vec . . .

Create a new plot with all of the vectors in the current plot, or only those mentioned as argu-
ments to the command, all data linearized onto an equidistant time scale.

How to compute the fft from a transient simulation output:

n g s p i c e 8 −> s e t p l o t t r a n 1
n g s p i c e 9 −> l i n e a r i z e V( 2 )
n g s p i c e 9 −> s e t specwindow=blackman
n g s p i c e 10 −> f f t V( 2 )
n g s p i c e 11 −> p l o t mag (V( 2 ) ) t s t e p

Linearize will redo the vectors vec or renew all vectors of the current plot (e.g. tran3) if no
arguments are given and store them into a new plot (e.g. tran4). The new vectors are interpolated
onto a linear time scale, which is determined by the values of tstep, tstart, and tstop in
the currently active transient analysis. The currently loaded input file must include a transient
analysis (a tran command may be run interactively before the last reset, alternately), and the
current plot must be from this transient analysis. The length of the new vector is (tstop
- tstart) / tstep + 1.5. This command is needed for example if you want to do a fft
analysis (17.5.24). Please note that the parameter tstep of your transient analysis (see chapter
15.3.9) has to be small enough to get adequate resolution, otherwise the command linearize
will do sub-sampling of your signal.

17.5.35 Listing*: Print a listing of the current circuit

General Form:

l i s t i n g [ l o g i c a l ] [ p h y s i c a l ] [ deck ] [ expand ] [ param ]

If the logical argument is given, the listing is with all continuation lines collapsed into one line,
and if the physical argument is given the lines are printed out as they were found in the file. The
default is logical. A deck listing is just like the physical listing, except without the line numbers
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it recreates the input file verbatim (except that it does not preserve case). If the word expand is
present, the circuit is printed with all subcircuits expanded. The option param allows to print
all parameters and their actual values.

17.5.36 Load: Load rawfile data

General Form:

l o a d [ f i l e n a m e ] . . .

Loads either binary or ascii format rawfile data from the files named. The default file-name is
rawspice.raw, or the argument to the -r flag if there was one.

17.5.37 Meas*: Measurements on simulation data

General Form (example):

MEAS {DC | AC | TRAN | SP} r e s u l t TRIG t r i g _ v a r i a b l e VAL= v a l <TD=td >
<CROSS=# | CROSS=LAST> <RISE = # | RISE=LAST> <FALL= # |FALL=LAST>
<TRIG AT=time > TARG t a r g _ v a r i a b l e VAL= v a l <TD=td > <CROSS=# | CROSS=LAST>
<RISE = # | RISE=LAST> <FALL= # |FALL=LAST> <TRIG AT=time >

Most of the input forms found in 15.4 may be used here with the command meas instead of
.meas(ure). Using meas inside the .control ... .endc section offers additional features com-
pared to the .meas use. meas will print the results as usual, but in addition will store its mea-
surement result (typically the token result given in the command line) in a vector. This vector
may be used in following command lines of the script as an input value of another command.
For details of the command see chapt. 15.4. The measurement type SP is only available here,
because a fft command will prepare the data for SP measurement. Option autostop (15.1.4)
is not available.

Unfortunately par(’expression’) (15.6.6) will not work here, i.e. inside the .control section.
You may use an expression by the let command instead, giving let vec_new = expression.

Replacement for par(’expression’) in meas inside the .control section

l e t v d i f f = v ( n1)−v ( n0 )
meas t r a n v t e s t f i n d v d i f f a t =0 .04 e−3
* t h e f o l l o w i n g w i l l n o t do h e r e :
*meas t r a n v t e s t f i n d p a r ( ’ v ( n1)−v ( n0 ) ’ ) a t =0 .04 e−3

17.5.38 Mdump*: Dump the matrix values to a file (or to console)

General Form:

mdump < f i l e n a m e >

If <filename> is given, the output will be stored in file <filename>, otherwise dumped to
your console.



296 CHAPTER 17. INTERACTIVE INTERPRETER

17.5.39 Mrdump*: Dump the matrix right hand side values to a file (or
to console)

General Form:

mrdump < f i l e n a m e >

If <filename> is given, the output will be appended to file <filename>, otherwise dumped to
your console.

Example usage after ngspice has started:

* Dump m a t r i x and RHS v a l u e s a f t e r 10 and 20 s t e p s
* o f a t r a n s i e n t s i m u l a t i o n
s o u r c e r c . c i r
s t e p 10
mdump m1 . t x t
mrdump mr1 . t x t
s t e p 10
mdump m2 . t x t
mrdump mr2 . t x t
* j u s t t o c o n t i n u e t o t h e end
s t e p 10000

You may create a loop using the control structures (chapt. 17.6).

17.5.40 Noise*: Noise analysis

See the .NOISE analysis (15.3.4) for details.

The noise command will generate two plots (typically named noise1 and noise2) with Noise
Spectral Density Curves and Integrated Noise data. To write these data into output file(s), you
may use the following command sequence:

Command sequence for writing noise data to file(s):

. c o n t r o l
t r a n 1e−6 1e−3
w r i t e t e s t _ t r a n . raw
n o i s e V( o u t ) v inp dec 333 1 1 e8 16
p r i n t i n o i s e _ t o t a l o n o i s e _ t o t a l
* f i r s t o p t i o n t o g e t a l l o f t h e o u t p u t ( two f i l e s )
s e t p l o t n o i s e 1
w r i t e t e s t _ n o i s e 1 . raw a l l
s e t p l o t n o i s e 2
w r i t e t e s t _ n o i s e 2 . raw a l l
* second o p t i o n ( a l l i n one raw− f i l e )
w r i t e t e s t a l l . raw n o i s e 1 . a l l n o i s e 2 . a l l
. endc
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17.5.41 Op*: Perform an operating point analysis

General Form:

op

Do an operating point analysis. See chapter 15.3.5 for more details.

17.5.42 Option*: Set a ngspice option

General Form:

o p t i o n [ o p t i o n = v a l ] [ o p t i o n = v a l ] . . .

Set any of the simulator variables as listed in chapt. 15.1. See this chapter also for more
information on the available options. The option command without any argument lists the
actual options set in the simulator (to be verified). Multiple options may be set in a single line.

The following example demonstrates a control section, which may be added to your circuit file
to test the influence of variable trtol on the number of iterations and on the simulation time.

Command sequence for testing option trtol:

. c o n t r o l
s e t n o i n i t

o p t i o n t r t o l =1
echo
echo t r t o l =1
run
r u s a g e t r a n i t e r t r a n t i m e
r e s e t
o p t i o n t r t o l =3
echo
echo t r t o l =3
run
r u s a g e t r a n i t e r t r a n t i m e
r e s e t
o p t i o n t r t o l =5
echo
echo t r t o l =5
run
r u s a g e t r a n i t e r t r a n t i m e
r e s e t
o p t i o n t r t o l =7
echo
echo t r t o l =7
run
r u s a g e t r a n i t e r t r a n t i m e
p l o t t r a n 1 . v ( ou t25 ) t r a n 1 . v ( ou t50 ) v ( ou t25 ) v ( ou t50 )
. endc
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17.5.43 Plot: Plot values on the display

General Form:

p l o t e x p r s [ y l i m i t y l o y h i ] [ x l i m i t x l o x h i ] [ x i n d i c e s x i l o x i h i ]
[ xcompress comp ] [ x d e l t a x d e l ] [ y d e l t a y d e l ] [ x log ] [ y log ] [ l o g l o g ]
[ vs xname ] [ x l a b e l word ] [ y l a b e l word ] [ t i t l e word ] [ samep ]
[ l i n e a r ]

Plot the given vectors or exprs on the screen (if you are on a graphics terminal). The xlimit
and ylimit arguments determine the high and low x- and y-limits of the axes, respectively. The
xindices arguments determine what range of points are to be plotted - everything between the
xilo’th point and the xihi’th point is plotted. The xcompress argument specifies that only one
out of every comp points should be plotted. If an xdelta or a ydelta parameter is present, it
specifies the spacing between grid lines on the X- and Y-axis. These parameter names may be
abbreviated to xl, yl, xind, xcomp, xdel, and ydel respectively.

The xname argument is an expression to use as the scale on the x-axis. If xlog or ylog are
present then the X or Y scale, respectively, is logarithmic (loglog is the same as specifying
both). The xlabel and ylabel arguments cause the specified labels to be used for the X and Y
axes, respectively.

If samep is given, the values of the other parameters (other than xname) from the previous plot,
hardcopy, or asciiplot command is used unless re-defined on the command line.

The title argument is used in the headline of the plot window and replaces the default text, which
is ’actual plot: first line of input file’.

The linear keyword is used to override a default logscale plot (as in the output for an AC analy-
sis).

Finally, the keyword polar generates a polar plot. To produce a smith plot, use the keyword
smith. Note that the data is transformed, so for smith plots you will see the data transformed
by the function (x-1)/(x+1). To produce a polar plot with a smith grid but without performing
the smith transform, use the keyword smithgrid.

If you specify plot all, all vectors (including the scale vector) are plotted versus the scale
vector (see commands display (17.5.20) or setscale (17.5.60) on viewing the vectors of the
current plot). The command plot ally will not plot the scale vector, but all other ’real’ y
values. The command plot alli will yield all current vectors, the command plot allv all
voltage vectors.

If the vector name to be plotted contains -, or / or other tokens which may be taken for oper-
ators of an expression, and plotting fails, try enclosing the name in double quotes, e.g. plot
“/vout”.

Plotting of complex vectors, as may occur after an ac simulation, require some special consid-
erations. Please see chapter 17.5.1 for details.

17.5.44 Pre_<command>: execute commands prior to parsing the circuit

General Form:

pre_ <command>
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All commands in a .control ... .endc section are executed after the circuit has been parsed. If you
need command execution before circuit parsing, you may add these commands to the general
spinit or local .spiceinit files. Another possibility is adding a leading pre_ to a command within
the .control section of an ordinary input file, which forces the command to be executed before
circuit parsing. Basically <command> may be any command listed in chapter 17.5, however
only a few commands are indeed useful here. Some examples are given below:

Examples:

p r e _ u n s e t ngdebug
p r e _ s e t s t r i c t _ e r r o r h a n d l i n g
pre_codemode l mymod . cm

pre_<command> is available only in the .control mode (see 16.4.3), not in interactive mode,
where the user may determine herself when a circuit is to be parsed, using the source command
(17.5.68) .

17.5.45 Print: Print values

General Form:

p r i n t [ c o l ] [ l i n e ] exp r . . .

Prints the vector(s) described by the expression expr. If the col argument is present, print the
vectors named side by side. If line is given, the vectors are printed horizontally. col is the
default, unless all the vectors named have a length of one, in which case line is the default.
The options width (default 80) and height (default 24) are effective for this command (see
asciiplot 17.5.5). The ’more’ mode is the standard mode if printing to the screen, that is
after a number of lines given by height, and after a page break printing stops with request for
answering the prompt by <return> (print next page), ’c’ (print rest) or ’q’ (quit printing). If
everything shall be printed without stopping, put the command set nomoremode into .spiceinit
16.6 (or spinit 16.5). If the expression is all, all of the vectors available are printed. Thus
print col all > filename prints everything into the file filename in SPICE2 format. The
scale vector (time, frequency) is always in the first column unless the variable noprintscale is
true. You may use the vectors alli, allv, ally with the print command, but then the scale
vector will not be printed.

Examples:

p r i n t a l l
s e t wid th =300
p r i n t v ( 1 ) > o u t f i l e . o u t

17.5.46 Quit: Leave Ngspice or Nutmeg

General Form:

q u i t
q u i t [ e x i t c o d e ]
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Quit ngnutmeg or ngspice. Ngspice will ask for an acknowledgment if parameters have not
been saved. If ’set noaskquit’ is specified, ngspice will terminate immediately.

The optional parameter exitcode is an integer which set the exit code for ngspice, useful to
return a success/fail value to the operating system.

17.5.47 Rehash: Reset internal hash tables

General Form:

r e h a s h

Recalculate the internal hash tables used when looking up UNIX commands, and make all
UNIX commands in the user’s PATH available for command completion. This is useless unless
you have set unixcom first (see above).

17.5.48 Remcirc*: Remove the current circuit

General Form:

r e m c i r c

This command removes the current circuit from the list of circuits sourced into ngspice. To
select a specific circuit, use setcirc (17.5.58). To load another circuit, refer to source (17.5.68).
The new actual circuit will be the circuit on top of the list of the remaining circuits.

17.5.49 Reset*: Reset an analysis

General Form:

r e s e t

Throw out any intermediate data in the circuit (e.g, after a breakpoint or after one or more
analyses have been done already), and re-parse the input file. The circuit can then be re-run
from it’s initial state, overriding the affect of any set or alter commands.

Reset may be required in simulation loops preceding any run (or tran ...) command.

17.5.50 Reshape: Alter the dimensionality or dimensions of a vector

General Form:

r e s h a p e v e c t o r v e c t o r . . .
o r
r e s h a p e v e c t o r v e c t o r . . . [ d imens ion , d imens ion , . . . ]
o r
r e s h a p e v e c t o r v e c t o r . . . [ d imens ion ] [ d imens ion ] . . .

This command changes the dimensions of a vector or a set of vectors. The final dimension
may be left off and it will be filled in automatically. If no dimensions are specified, then the
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dimensions of the first vector are copied to the other vectors. An error message of the form
’dimensions of x were inconsistent’ can be ignored.

Example:

* g e n e r a t e v e c t o r w i th a l l ( h e r e 30) e l e m e n t s
l e t newvec= v e c t o r ( 3 0 )
* r e s h a p e v e c t o r t o f o r m a t 3 x 10
r e s h a p e newvec [ 3 ] [ 1 0 ]
* a c c e s s e l e m e n t s o f t h e r e s h a p e d v e c t o r
p r i n t newvec [ 0 ] [ 9 ]
p r i n t newvec [ 1 ] [ 5 ]
l e t newt = newvec [ 2 ] [ 4 ]

17.5.51 Resume*: Continue a simulation after a stop

General Form:

resume

Resume a simulation after a stop or interruption (control-C).

17.5.52 Rspice*: Remote ngspice submission

General Form:

r s p i c e i n p u t f i l e

Runs a ngspice remotely taking the input file as a ngspice input file, or the current circuit if no
argument is given. Ngnutmeg or ngspice waits for the job to complete, and passes output from
the remote job to the user’s standard output. When the job is finished the data is loaded in as
with aspice. If the variable rhost is set, ngnutmeg connects to this host instead of the default
remote ngspice server machine. This command uses the “rsh” command and thereby requires
authentication via a “.rhosts” file or other equivalent method. Note that “rsh” refers to the
“remote shell” program, which may be “remsh” on your system; to override the default name
of “rsh”, set the variable remote_shell. If the variable rprogram is set, then rspice uses this
as the pathname to the program to run on the remote system.

Note: rspice will not acknowledge elements that have been changed via the “alter” or “altermod”
commands.

17.5.53 Run*: Run analysis from the input file

General Form:

run [ r a w f i l e ]

Run the simulation as specified in the input file. If there were any of the control lines .ac, .op,
.tran, or .dc, they are executed. The output is put in rawfile if it was given, in addition to being
available interactively.
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17.5.54 Rusage: Resource usage

General Form:

r u s a g e [ r e s o u r c e . . . ]

Print resource usage statistics. If any resources are given, just print the usage of that resource.
Most resources require that a circuit be loaded. Currently valid resources are:

decklineno Number of lines in deck

netloadtime Nelist loading time

netparsetime Netlist parsing time

elapsed The amount of time elapsed since the last rusage elapsed call.

faults Number of page faults and context switches (BSD only).

space Data space used.

time CPU time used so far.

temp Operating temperature.

tnom Temperature at which device parameters were measured.

equations Circuit Equations

time Total Analysis Time

totiter Total iterations

accept Accepted time-points

rejected Rejected time-points

loadtime Time spent loading the circuit matrix and RHS.

reordertime Matrix reordering time

lutime L-U decomposition time

solvetime Matrix solve time

trantime Transient analysis time

tranpoints Transient time-points

traniter Transient iterations

trancuriters Transient iterations for the last time point*

tranlutime Transient L-U decomposition time

transolvetime Transient matrix solve time

everything All of the above.

* listed incorrectly as "Transient iterations per point".



17.5. COMMANDS 303

17.5.55 Save*: Save a set of outputs

General Form:

save [ a l l | o u t v e c . . . ]

Save a set of outputs, discarding the rest (if not keyword “all” is given). Maybe used to dramati-
cally reduce memory (RAM) requirements if only a few useful node voltages or branch currents
are saved.

Node voltages may be saved by giving the nodename or v(nodename). Currents through an
independent voltage source are given by i(sourcename) or sourcename#branch. Internal device
data (31.1) are accepted as @dev[param]. The syntax is identical to the .save command (15.6.1).

Note: In the .control .... .endc section save must occur before the run or tran com-
mand to become effective.

If a node has been mentioned in a save command, it appears in the working plot after a run has
completed, or in the rawfile written by the write (17.5.86) command. For backward compatibil-
ity, if there are no save commands given, all outputs are saved. If you want to trace (17.5.76) or
plot (17.5.43) a node, you have to save it explicitly, except for “all” given or no save command
at all.

When the keyword “all” appears in the save command, all node voltages, voltage source currents
and inductor currents are saved in addition to any other vectors listed.

Save voltage and current:

s ave vd_node vs # b ra nc h v ( vs_node ) i ( vs2 )

Save allows to store and later access internal device parameters. e.g. in a command like

Save internal parameters:

s ave a l l @mn1[gm]

which saves all standard analysis output data plus gm of transistor mn1 to the internal memory
(see also 31.1).

save may store data from nodes or devices residing inside of a subcircuit:

Save voltage on node 3 (top level), node 8 (from inside subcircuit x2) and current through vmeas
(from subcircuit x1):

s ave 3 x1 . x2 . x1 . x2 . 8 v . x1 . x1 . x1 . vmeas# b ra nc h

Save internal parameters within subcircuit:

s ave @m. xmos3 . mn1 [gm]

Use commands listing expand (17.5.35, before the simulation) or display (17.5.20, after
simulation) to obtain a list of all nodes and currents available. Please see chapter 31 for an
explanation of the syntax for internal parameters.

Entering several save lines in a single .control section will accumulate the nodes and parameters
to be saved. If you want to exclude a node, you have to get its number by calling status
(17.5.70) and then calling delete number (17.5.16).
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17.5.56 Sens*: Run a sensitivity analysis

General Form:

s e n s o u t p u t _ v a r i a b l e
s e n s o u t p u t _ v a r i a b l e ac ( DEC | OCT | LIN ) N F s t a r t F s t o p

Perform a Sensitivity analysis. output_variable is either a node voltage (ex. “v(1)” or
“v(A,out)”) or a current through a voltage source (ex. “i(vtest)”). The first form calculates
DC sensitivities, the second form calculates AC sensitivities. The output values are in dimen-
sions of change in output per unit change of input (as opposed to percent change in output or
per percent change of input).

17.5.57 Set: Set the value of a variable

General Form:

s e t [ word ]
s e t [ word = v a l u e ] . . .

Set the value of word to be value, if it is present. You can set any word to be any value, numeric
or string. If no value is given then the value is the Boolean ’true’. If you enter a string containing
spaces, you have to enclose it with double quotes.

The value of word may be inserted into a command by writing $word. If a variable is set to
a list of values that are enclosed in parentheses (which must be separated from their values by
white space), the value of the variable is the list.

The variables used by ngspice are listed in section 17.7.

Set entered without any parameter will list all variables set, and their values, if applicable.

17.5.58 Setcirc*: Change the current circuit

General Form:

s e t c i r c [ c i r c u i t name ]

The current circuit is the one that is used for the simulation commands below. When a circuit
is loaded with the source command (see below, 17.5.68) it becomes the current circuit.

Setcirc followed by ’return’ without any parameter will list all circuits loaded.

17.5.59 Setplot: Switch the current set of vectors

General Form:

s e t p l o t [ p lo tname ]

Set the current plot to the plot with the given name, or if no name is given, prompt the user
with a menu. (Note that the plots are named as they are loaded, with names like tran1 or op2.
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These names are shown by the setplot and display commands and are used by diff, below.) If
the “New plot” item is selected, the current plot becomes one with no vectors defined.

Note that here the word “plot” refers to a group of vectors that are the result of one ngspice run.
When more than one file is loaded in, or more than one plot is present in one file, ngspice keeps
them separate and only shows you the vectors in the current plot.

17.5.60 Setscale: Set the scale vector for the current plot

General Form:

s e t s c a l e [ v e c t o r ]

Defines the scale vector for the current plot. If no argument is given, the current scale vector is
printed. The scale vector delivers the values for the x-axis in a 2D plot.

17.5.61 Settype: Set the type of a vector

General Form:

s e t t y p e t y p e v e c t o r . . .

Change the type of the named vectors to type. Type names can be found in the following table.

Type Unit Type Unit
notype pole
time s zero

frequency Hz s-param
voltage V temp-sweep Celsius
current A res-sweep Ohms

onoise-spectrum (V or A)^2/Hz impedance Ohms
onoise-integrated V or A admittance Mhos
inoise-spectrum (V or A)^2/Hz power W
inoise-integrated V or A phase Degree

decibel dB

17.5.62 Shell: Call the command interpreter

General Form:

s h e l l [ command ]

Call the operating system’s command interpreter; execute the specified command or call for
interactive use.

17.5.63 Shift: Alter a list variable

General Form:

s h i f t [ varname ] [ number ]
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If varname is the name of a list variable, it is shifted to the left by number elements (i.e, the
number leftmost elements are removed). The default varname is argv, and the default number
is 1.

17.5.64 Show*: List device state

General Form:

show d e v i c e s [ : p a r a m e t e r s ] , . . .

The show command prints out tables summarizing the operating condition of selected devices.
If devices is missing, a default set of devices are listed, if devices is a single letter, devices
of that type are listed. A device’s full name may be specified to list only that device. Finally,
devices may be selected by model by using the form “#modelname”.

If no parameters are specified, the values for a standard set of parameters are listed. If the list of
parameters contains a “+”, the default set of parameters is listed along with any other specified
parameters.

For both devices and parameters, the word “all” has the obvious meaning.

Note: there must be spaces separating the “:” that divides the device list from the parameter list.

17.5.65 Showmod*: List model parameter values

General Form:

showmod models [ : p a r a m e t e r s ] , . . .

The showmod command operates like the show command (above) but prints out model param-
eter values. The applicable forms for models are a single letter specifying the device type letter
(e.g. m, or c), a device name (e.g. m.xbuf22.m4b), or #modelname (e.g. #p1).

17.5.66 Snload*: Load the snapshot file

General Form:

s n l o a d c i r c u i t − f i l e f i l e

snload reads the snapshot file generated by snsave (17.5.67). circuit-file is the original circuit
input file. After reading the simulation may be continued by resume (17.5.51).

An input script for loading circuit and intermediate data, resuming simulation and plotting is
shown below:
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Typical usage:

* SCRIPT : ADDER − 4 BIT BINARY
* s c r i p t t o r e l o a d c i r c u i t and c o n t i n u e t h e s i m u l a t i o n
* b e g i n wi th e d i t i n g t h e f i l e l o c a t i o n
* t o be s t a r t e d wi th ’ n g s p i c e a d d e r _ s n l o a d . s c r i p t ’

. c o n t r o l
* cd t o where a l l f i l e s a r e l o c a t e d
cd D : \ S p i c e _ g e n e r a l \ n g s p i c e \ examples \ s n a p s h o t
* l o a d c i r c u i t and s n p a s h o t f i l e
s n l o a d a d d e r _ m o s _ c i r c . c i r adde r500 . snap
* c o n t i n u e s i m u l a t i o n
resume
* p l o t some node v o l t a g e s
p l o t v ( 1 0 ) v ( 1 1 ) v ( 1 2 )
. endc

Due to bug we currently need the term ’script’ in the title line (first line) of the script.

17.5.67 Snsave*: Save a snapshot file

General Form:

s n s a v e f i l e

If you run a transient simulation and interrupt it by e.g. a stop breakpoint (17.5.72), you may
resume simulation immediately (17.5.51) or store the intermediate status in a snapshot file by
snsave for resuming simulation later (using snload (17.5.66)), even with a new instance of
ngspice.
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Typical usage:

Example i n p u t f i l e f o r s n s a v e
* l o a d a c i r c u i t ( i n c l u d i n g t r a n s i s t o r models and . t r a n command )
* s t a r t s t r a n s i e n t s i m u l a t i o n u n t i l s t o p p o i n t
* s t o r e i n t e r m e d i a t e d a t a t o f i l e
* b e g i n wi th e d i t i n g t h e f i l e l o c a t i o n
* t o be run wi th ’ n g s p i c e adder_mos . c i r ’

. i n c l u d e a d d e r _ m o s _ c i r c . c i r

. c o n t r o l
* cd t o where a l l f i l e s a r e l o c a t e d
cd D : \ S p i c e _ g e n e r a l \ n g s p i c e \ examples \ s n a p s h o t
s e t n o a s k q u i t
s e t n o i n i t
* i n t e r r u p t c o n d i t i o n f o r t h e s i m u l a t i o n
s t o p when t ime > 500n
* s i m u l a t e
run
* s t o r e s n a p s h o t t o f i l e
s n s a v e adde r500 . snap
q u i t
. endc

.END

adder_mos_circ.cir is a circuit input file, including the netlist, .model and .tran statements.

Unfortunately snsave/snload will not work if you have XSPICE devices (or V/I sources with
polynomial statement) in your input deck.

17.5.68 Source: Read a ngspice input file

General Form:

s o u r c e i n f i l e

For ngspice: read the ngspice input file infile, containing a circuit netlist. Ngnutmeg and ngspice
commands may be included in the file, and must be enclosed between the lines .control and
.endc. These commands are executed immediately after the circuit is loaded, so a control
line of ac ... works the same as the corresponding .ac card. The first line in any input file
is considered a title line and not parsed but kept as the name of the circuit. Thus, a ngspice
command script in infile must begin with a blank line and then with a .control line. Also, any
line starting with the characters *# is considered as a control line (.control and .endc is placed
around this line automatically.). The exception to these rules are the files spinit (16.5) and
.spiceinit (16.6).

For ngutmeg: reads commands from the file infile. Lines beginning with the character * are
considered comments and are ignored.
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The following search path is executed to find infile: current directory (OS dependent), <pre-
fix>/share/ngspice/scripts, env. variable NGSPICE_INPUT_DIR (if defined), see 16.7. This
sequence may be overriden by setting the internal sourcepath variable (see 17.7) before calling
source infile.

17.5.69 Spec: Create a frequency domain plot

General Form:

spec s t a r t _ f r e q s t o p _ f r e q s t e p _ f r e q v e c t o r [ v e c t o r . . . ]

Calculates a new complex vector containing the Fourier transform of the input vector (typically
the linearized result of a transient analysis). The default behavior is to use a Hanning window,
but this can be changed by setting the variables specwindow and specwindoworder appropri-
ately.

Typical usage:

n g s p i c e 13 −> l i n e a r i z e
n g s p i c e 14 −> s e t specwindow = " blackman "
n g s p i c e 15 −> spec 10 1000000 1000 v ( o u t )
n g s p i c e 16 −> p l o t mag ( v ( o u t ) )

Possible values for specwindow are: none, hanning, cosine, rectangular, hamming, triangle,
bartlet, blackman, gaussian and flattop. In the case of a gaussian window specwindoworder is a
number specifying its order. For a list of window functions see 17.5.24.

17.5.70 Status*: Display breakpoint information

General Form:

s t a t u s

Display all of the saved nodes and parameters, traces and breakpoints currently in effect.

17.5.71 Step*: Run a fixed number of time-points

General Form:

s t e p [ number ]

Iterate number times, or once, and then stop.

17.5.72 Stop*: Set a breakpoint

General Form:

s t o p [ a f t e r n ] [ when v a l u e cond v a l u e ] . . .
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Set a breakpoint. The argument after n means stop after iteration number “n”, and the argument
when value cond value means stop when the first value is in the given relation with the
second value, the possible relations being

Symbol Alias Meaning
= eq equal to

<> ne not equal
> gt greater than
< lt less than

>= ge greater than or equal to
<= le less than or equal to

Symbol or alias may be used alternatively. All stop commands have to be given in the control
flow before the run command. The values above may be node names in the running circuit, or
real values. If more than one condition is given, e.g.

stop after 4 when v(1) > 4 when v(2) < 2,

the conjunction of the conditions is implied. If the condition is met, the simulation and control
flow are interrupted, and ngspice waits for user input.

In a transient simulation the ’=’ or ’eq’ will only work with vector ’time’ in commands like

stop when time = 200n.

Internally a breakpoint will be set at the time requested. Multiple breakpoints may be set. If
the first stop condition is met, the simulation is interrupted, the commands following run or
tran (e.g. alter or altermod) are executed, then the simulation may continue at the first resume
command. The next breakpoint requires another resume to continue automatically. Otherwise
the simulation stops and ngspice waits for user input.

If you try to stop at

stop when V(1) eq 1

(or similar) during a transient simulation, you probably will miss this point, because it is not
very likely that at any time step the vector v(1) will have the exact value of 1. Then ngspice
simply will not stop.

17.5.73 Strcmp: Compare two strings

General Form:

s t r c mp _ f l a g $ s t r i n g 1 " s t r i n g 2 "

The command compares two strings, either given by a variable (string1) or as a string in quotes
(“string2”). _flag is set as an output variable to ’0’, if both strings are equal. A value greater
than zero indicates that the first character that does not match has a greater value in str1 than in
str2; and a value less than zero indicates the opposite (like the C strcmp function).

17.5.74 Sysinfo*: Print system information

General Form:

s y s i n f o
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The command prints system information useful for sending bug report to developers. Informa-
tion consists of:

• Name of the operating system,

• CPU type,

• Number of physical processors (not available under Windows OS), number of logical
processors,

• Total amount of DRAM available,

• DRAM currently available.

The example below shows the use of this command.

n g s p i c e 1 −> s y s i n f o
OS : CYGWIN_NT−5.1 1 . 5 . 2 5 ( 0 . 1 5 6 / 4 / 2 ) 2008−06−12 19 :34
CPU: I n t e l (R) Pent ium (R) 4 CPU 3 . 4 0GHz
L o g i c a l p r o c e s s o r s : 2
T o t a l DRAM a v a i l a b l e = 1535.480469 MB.

DRAM c u r r e n t l y a v a i l a b l e = 984 .683594 MB.
n g s p i c e 2 −>

This command has been tested under Windows OS and LINUX. It may not be available in your
operating system environment.

17.5.75 Tf*: Run a Transfer Function analysis

General Form:

t f o u t p u t _ n o d e i n p u t _ s o u r c e

The tf command performs a transfer function analysis, returning:

• the transfer function (output/input),

• output resistance,

• and input resistance

between the given output node and the given input source. The analysis assumes a small-signal
DC (slowly varying) input. The following example file
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Example input file:

* Tf t e s t c i r c u i t
vs 1 0 dc 5
r1 1 2 100
r2 2 3 50
r3 3 0 150
r4 2 0 200

. c o n t r o l
t f v ( 3 , 5 ) vs
p r i n t a l l
. endc

. end

will yield the following output:

transfer_function = 3.750000e-001

output_impedance_at_v(3,5) = 6.662500e+001

vs#input_impedance = 2.000000e+002

17.5.76 Trace*: Trace nodes

General Form:

t r a c e [ node . . . ]

For every step of an analysis, the value of the node is printed. Several traces may be active at
once. Tracing is not applicable for all analyses. To remove a trace, use the delete (17.5.16)
command.

17.5.77 Tran*: Perform a transient analysis

General Form:

t r a n T s t e p Ts top [ T s t a r t [ Tmax ] ] [ UIC ]

Perform a transient analysis. See chapter 15.3.9 of this manual for more details.

An interactive transient analysis may be interrupted by issuing a ctrl-c (control-C) command.
The analysis then can be resumed by the resume command (17.5.51). Several options may be
set to control the simulation (15.1.4).

17.5.78 Transpose: Swap the elements in a multi-dimensional data set

General Form:

t r a n s p o s e v e c t o r v e c t o r . . .
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This command transposes a multidimensional vector. No analysis in ngspice produces mul-
tidimensional vectors, although the DC transfer curve may be run with two varying sources.
You must use the “reshape” command to reform the one-dimensional vectors into two dimen-
sional vectors. In addition, the default scale is incorrect for plotting. You must plot versus the
vector corresponding to the second source, but you must also refer only to the first segment of
this second source vector. For example (circuit to produce the transfer characteristic of a MOS
transistor):

How to produce the transfer characteristic of a MOS transistor:

n g s p i c e > dc vgg 0 5 1 vdd 0 5 1
n g s p i c e > p l o t i ( vdd )
n g s p i c e > r e s h a p e a l l [ 6 , 6 ]
n g s p i c e > t r a n s p o s e i ( vdd ) v ( d r a i n )
n g s p i c e > p l o t i ( vdd ) vs v ( d r a i n ) [ 0 ]

17.5.79 Unalias: Retract an alias

General Form:

u n a l i a s [ word . . . ]

Removes any aliases present for the words.

17.5.80 Undefine: Retract a definition

General Form:

u n d e f i n e f u n c t i o n

Definitions for the named user-defined functions are deleted.

17.5.81 Unlet: Delete the specified vector(s)

General Form:

u n l e t v e c t o r [ v e c t o r . . . ]

Delete the specified vector(s). See also let (17.5.33).

17.5.82 Unset: Clear a variable

General Form:

u n s e t [ word . . . ]

Clear the value of the specified variable(s) (word).
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17.5.83 Version: Print the version of ngspice

General Form:

v e r s i o n [− s | −f | < v e r s i o n id >]

Print out the version of ngnutmeg that is running, if invoked without argument or with -s or -f.
If the argument is a <version id> (any string different from -s or -f is considered a <version id>
), the command checks to make sure that the arguments match the current version of ngspice.
(This is mainly used as a Command: line in rawfiles.)

Options description:

• No option: The output of the command is the message you can see when running ngspice
from the command line, no more no less.

• -s(hort): A shorter version of the message you see when calling ngspice from the com-
mand line.

• -f(ull): You may want to use this option if you want to know what extensions are included
into the simulator and what compilation switches are active. A list of compilation options
and included extensions is appended to the normal (not short) message. May be useful
when sending bug reports.

The following example shows what the command returns is some situations:

Use of the version command:

n g s p i c e 10 −> v e r s i o n
******
** n g s p i c e −24 : C i r c u i t l e v e l s i m u l a t i o n program
** The U. C . B e r k e l e y CAD Group
** C o p y r i g h t 1985−1994 , Regen t s o f t h e U n i v e r s i t y o f C a l i f o r n i a .
** P l e a s e g e t your n g s p i c e manual from

h t t p : / / n g s p i c e . s o u r c e f o r g e . n e t / docs . h tml
** P l e a s e f i l e your bug−r e p o r t s a t

h t t p : / / n g s p i c e . s o u r c e f o r g e . n e t / bugrep . h tml
** C r e a t i o n Date : Jan 1 2011 1 3 : 3 6 : 3 4
******
n g s p i c e 2 −>
n g s p i c e 11 −> v e r s i o n 14
Note : r a w f i l e i s v e r s i o n 14 ( c u r r e n t v e r s i o n i s 24)
n g s p i c e 12 −> v e r s i o n 24
n g s p i c e 13 −>

Note for developers: The option listing returned when version is called with the
-f flag is built at compile time using #ifdef blocks. When new compile switches
are added, if you want them to appear on the list, you have to modify the code in
misccoms.c.
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17.5.84 Where*: Identify troublesome node or device

General Form:

where

When performing a transient or operating point analysis, the name of the last node or device to
cause non-convergence is saved. The where command prints out this information so that you
can examine the circuit and either correct the problem or make a bug report. You may do this
either in the middle of a run or after the simulator has given up on the analysis. For transient
simulation, the iplot command can be used to monitor the progress of the analysis. When the
analysis slows down severely or hangs, interrupt the simulator (with control-C) and issue the
where command. Note that only one node or device is printed; there may be problems with
more than one node.

17.5.85 Wrdata: Write data to a file (simple table)

General Form:

w rd a t a [ f i l e ] [ vec s ]

Writes out the vectors to file.

This is a very simple printout of data in array form. Column one is the default scale data, column
two the simulated data. If more than one vector is given, the third column again is the default
scale, the fourth the data of the second vector. The default format is ASCII. All vectors have to
stem from the same plot, otherwise a seg fault may occur. No further information is written to
the file, so you have to keep track of your multiple outputs. The format may be changed in the
near future.

output example from two vectors:

0.000000e+000 -1.845890e-006 0.000000e+000 0.000000e+000
7.629471e+006 4.243518e-006 7.629471e+006 -4.930171e-006
1.525894e+007 -5.794628e-006 1.525894e+007 4.769020e-006
2.288841e+007 5.086875e-006 2.288841e+007 -3.670687e-006
3.051788e+007 -3.683623e-006 3.051788e+007 1.754215e-006
3.814735e+007 1.330798e-006 3.814735e+007 -1.091843e-006
4.577682e+007 -3.804620e-007 4.577682e+007 2.274678e-006
5.340630e+007 9.047444e-007 5.340630e+007 -3.815083e-006
6.103577e+007 -2.792511e-006 6.103577e+007 4.766727e-006
6.866524e+007 5.657498e-006 6.866524e+007 -2.397679e-006
....

If variable appendwrite is set, the data may be added to an existing file.

17.5.86 Write: Write data to a file (Spice3f5 format)

General Form:

w r i t e [ f i l e ] [ e x p r s ]
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Writes out the expressions to file.

First vectors are grouped together by plots, and written out as such (i.e, if the expression list
contained three vectors from one plot and two from another, then two plots are written, one
with three vectors and one with two). Additionally, if the scale for a vector isn’t present, it is
automatically written out as well.

The default format is a compact binary, but this can be changed to ASCII with the set file-
type=ascii command. The default file name is rawspice.raw, or the argument to the -r flag
on the command line, if there was one, and the default expression list is all.

If variable appendwrite is set, the data may be added to an existing file.

17.5.87 Wrs2p: Write scattering parameters to file (Touchstone® format)

General Form:

wrs2p [ f i l e ]

Writes out the s-parameters of a two-port to file.

In the active plot the following is required: vectors frequency, S11 S12 S21 S22, all having the
same length and having complex values (as a result of an ac analysis), and vector Rbase. For
details how to generate these data see chapt. 17.9.

The file format is Touchstone® Version 1, ASCII, frequency in Hz, real and imaginary parts of
Snn versus frequency.

The default file name is s-param.s2p.

output example:

!2-port S-parameter file
!Title: test for scattering parameters
!Generated by ngspice at Sat Oct 16 13:51:18 2010
# Hz S RI R 50
!freq ReS11 ImS11
ReS21 ...
2.500000e+006 -1.358762e-003 -1.726349e-002

9.966563e-001
5.000000e+006 -5.439573e-003 -3.397117e-002

9.867253e-001
....

17.5.88 Xgraph: use the xgraph(1) program for plotting.

General Form:

xgraph f i l e [ e x p r s ] [ p l o t o p t i o n s ]

The ngspice/ngnutmeg xgraph command plots data like the plot command but via xgraph, a
popular X11 plotting program. If file is either “temp” or “tmp” a temporary file is used to hold
the data while being plotted. For available plot options, see the plot command. All options
except for polar or smith plots are supported.
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17.6 Control Structures

17.6.1 While - End

General Form:

w h i l e c o n d i t i o n
s t a t e m e n t
. . .
end

While condition, an arbitrary algebraic expression, is true, execute the statements.

17.6.2 Repeat - End

General Form:

r e p e a t [ number ]
s t a t e m e n t
. . .
end

Execute the statements number times, or forever if no argument is given.

17.6.3 Dowhile - End

General Form:

dowhi l e c o n d i t i o n
s t a t e m e n t
. . .
end

The same as while, except that the condition is tested after the statements are executed.

17.6.4 Foreach - End

General Form:

f o r e a c h v a r v a l u e . . .
s t a t e m e n t
. . .
end

The statements are executed once for each of the values, each time with the variable var set to
the current one. (var can be accessed by the $var notation - see below).
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17.6.5 If - Then - Else

General Form:

i f c o n d i t i o n
s t a t e m e n t
. . .
e l s e
s t a t e m e n t
. . .
end

If the condition is non-zero then the first set of statements are executed, otherwise the second
set. The else and the second set of statements may be omitted.

17.6.6 Label

General Form:

l a b e l word

If a statement of the form goto word is encountered, control is transferred to this point, otherwise
this is a no-op.

17.6.7 Goto

General Form:

go to word

If a statement of the form label word is present in the block or an enclosing block, control is
transferred there. Note that if the label is at the top level, it must be before the goto statement
(i.e, a forward goto may occur only within a block). A block to just include goto on the top
level may look like

Example noop block to include forward goto on top level:

i f ( 1 )
. . .
go to g oh e re
. . .
l a b e l go he re
end

17.6.8 Continue

General Form:

c o n t i n u e

If there is a while, dowhile, or foreach block enclosing this statement, control passes to the test,
or in the case of foreach, the next value is taken. Otherwise an error results.
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17.6.9 Break

General Form:

b r e a k

If there is a while, dowhile, or foreach block enclosing this statement, control passes out of the
block. Otherwise an error results.

Of course, control structures may be nested. When a block is entered and the input is the
terminal, the prompt becomes a number of >’s corresponding to the number of blocks the user
has entered. The current control structures may be examined with the debugging command
cdump (see 17.5.9).

17.7 Internally predefined variables

The operation of both ngutmeg and ngspice may be affected by setting variables with the “set”
command (17.5.57). In addition to the variables mentioned below, the “set” command in
ngspice also affects the behavior of the simulator via the options previously described under
the section on “.OPTIONS” (15.1). You also may define new variables or alter existing variables
inside .control ... .endc for later use in your user-defined script (see chapter 17.8).

The following list is in alphabetical order. All of them are acknowledged by ngspice. Frontend
variables (e.g. on circuits and simulation) are not defined in ngnutmeg. The predefined variables
which may be set or altered by the “set” command are:

appendwrite Append to the file when a write command is issued, if one already exists.

brief If set to FALSE, the netlist will be printed.

colorN These variables determine the colors used, if X is being run on a color display. N may
be between 0 and 15. Color 0 is the background, color 1 is the grid and text color, and
colors 2 through 15 are used in order for vectors plotted. The value of the color variables
should be names of colors, which may be found in the file /usr/lib/rgb.txt. ngspice
for Windows does support only white background (color0=white with black grid and text)
or or color0=black with white grid and text.

cpdebug Print control debugging information.

curplotdate Sets the date of the current plot.

curplotname Sets the name of the current plot.

curplottitle Sets the title (a short description) of the current plot.

debug If set then a lot of debugging information is printed.

device The name (/dev/tty??) of the graphics device. If this variable isn’t set then the user’s
terminal is used. To do plotting on another monitor you probably have to set both the
device and term variables. (If device is set to the name of a file, nutmeg dumps the
graphics control codes into this file – this is useful for saving plots.)
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diff_abstol The relative tolerance used by the diff command (default is 1e-12).

diff_reltol The relative tolerance used by the diff command (default is 0.001).

diff_vntol The absolute tolerance for voltage type vectors used by the diff command (default
is 1e-6).

echo Print out each command before it is executed.

editor The editor to use for the edit command.

filetype This can be either ascii or binary, and determines the format of the raw file (com-
pact binary or text editor readable ascii). The default is binary.

fourgridsize How many points to use for interpolating into when doing Fourier analysis.

gridsize If this variable is set to an integer, this number is used as the number of equally spaced
points to use for the Y axis when plotting. Otherwise the current scale is used (which
may not have equally spaced points). If the current scale isn’t strictly monotonic, then
this option has no effect.

gridstyle Sets the grid during plotting with the plot command. Will be overridden by direct
entry of gridstyle in the plot command. A linear grid is standard for both x and y axis. Al-
lowed values are lingrid loglog xlog ylog smith smithgrid polar nogrid.

hcopydev If this is set, when the hardcopy command is run the resulting file is automatically
printed on the printer named hcopydev with the command lpr -Phcopydev -g file.

hcopyfont This variable specifies the font name for hardcopy output plots. The value is device
dependent.

hcopyfontsize This is a scaling factor for the font used in hardcopy plots.

hcopydevtype This variable specifies the type of the printer output to use in the hardcopy com-
mand. If hcopydevtype is not set, Postscript format is assumed. plot (5) is recognized
as an alternative output format. When used in conjunction with hcopydev, hcopydevtype
should specify a format supported by the printer.

hcopyscale This is a scaling factor for the font used in hardcopy plots (between 0 and 10).

hcopywidth Sets width of the hardcopy plot.

hcopyheight Sets height of the hardcopy plot.

hcopypscolor Sets the color of the hardcopy output. If not set, black & white plotting is as-
sumed with different linestyles for each output vector plotted. Setting to any valid color
integer value yields a colored plot background (0: black 1: white, others see below) and
colored solid lines. This is valid for postscript only.

hcopypstxcolor This variable sets the color of the text in the postscript hardcopy output. If not
set, black is assumed on white background, white on black background. Valid colors are
0: black 1: white 2: red 3: blue 4: orange 5: green 6: pink 7: brown 8: khaki 9: plum 10:
orchid 11: violet 12: maroon 13: turquoise 14: sienna 15: coral 16: cyan 17: magenta
18: gray for smith grid 19: gray for smith grid 20: gray for normal grid
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height The length of the page for asciiplot and print col.

history The number of events to save in the history list.

lprplot5 This is a printf(3s) style format string used to specify the command to use for
sending plot(5)-style plots to a printer or plotter. The first parameter supplied is the printer
name, the second parameter supplied is a file name containing the plot. Both parameters
are strings. It is trivial to cause ngspice to abort by supplying a unreasonable format
string.

lprps This is a printf(3s) style format string used to specify the command to use for sending
Postscript plots to a printer or plotter. The first parameter supplied is the printer name, the
second parameter supplied is a file name containing the plot. Both parameters are strings.
It is trivial to cause ngspice to abort by supplying a unreasonable format string.

modelcard The name of the model card (normally .MODEL)

nfreqs The number of frequencies to compute in the Fourier command. (Defaults to 10.)

ngbehavior Sets the compatibility mode of ngspice. To be set in spinit (16.5) or .spiceinit
(16.6).Its value ’all’ will improve compatibility to commercial simulators. Full com-
patibility is however not the intention of ngspice! This value may be set as a standard in
the future. ’ps’, ’hs’ and ’spice3’ are available. See chapt. 16.13.

noaskquit Do not check to make sure that there are no circuits suspended and no plots unsaved.
Normally ngspice warns the user when he tries to quit if this is the case.

nobjthack BJTs can have either 3 or 4 nodes, which makes it difficult for the subcircuit ex-
pansion routines to decide what to rename. If the fourth parameter has been declared as a
model name, then it is assumed that there are 3 nodes, otherwise it is considered a node.
To disable this, you can set the variable "nobjthack" which forces BJTs to have 4 nodes
(for the purposes of subcircuit expansion, at least).

nobreak Don’t have asciiplot and print col break between pages.

noasciiplotvalue Don’t print the first vector plotted to the left when doing an asciiplot.

nobjthack Assume that BJTs have 4 nodes.

noclobber Don’t overwrite existing files when doing IO redirection.

noglob Don’t expand the global characters ‘*’, ‘?’, ‘[’, and ‘]’. This is the default.

nomoremode If nomoremode is not set, whenever a large amount of data is being printed to
the screen (e.g, the print or asciiplot commands), the output is stopped every screenful
and continues when a carriage return is typed. If nomoremode is set then data scrolls off
the screen without check.

nonomatch If noglob is unset and a global expression cannot be matched, use the global char-
acters literally instead of complaining.

noparse Don’t attempt to parse input files when they are read in (useful for debugging). Of
course, they cannot be run if they are not parsed.
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noprintscale Don’t print the scale in the leftmost column when a print col command is given.

nosort Don’t have display sort the variable names.

nosubckt Don’t expand subcircuits.

notrnoise Switch off the transient noise sources (chapt. 4.1.7).

numdgt The number of digits to print when printing tables of data (a, print col). The default
precision is 6 digits. On the VAX, approximately 16 decimal digits are available using
double precision, so p should not be more than 16. If the number is negative, one fewer
digit is printed to ensure constant widths in tables.

num_threads The number of of threads to be used if OpenMP (see chapt. 16.10) is selected.
The default value is 2.

plotstyle This should be one of linplot, combplot, or pointplot. linplot, the default,
causes points to be plotted as parts of connected lines. combplot causes a comb plot
to be done. It plots vectors by drawing a vertical line from each point to the X-axis, as
opposed to joining the points. pointplot causes each point to be plotted separately.

pointchars Set a string as a list of characters to be used as points in a point plot. Standard is
ox*+#abcdefhgijklmnpqrstuvwyz. Characters §C are not allowed.

polydegree The degree of the polynomial that the plot command should fit to the data. If
polydegree is N, then nutmeg fits a degree N polynomial to every set of N points and
draw 10 intermediate points in between each end point. If the points aren’t monotonic,
then it tries rotating the curve and reducing the degree until a fit is achieved.

polysteps The number of points to interpolate between every pair of points available when
doing curve fitting. The default is 10.

program The name of the current program (argv[0]).

prompt The prompt, with the character ‘!’ replaced by the current event number. Single quotes
’ ’ are required around the string entered!

rawfile The default name for rawfiles created.

remote_shell Overrides the name used for generating rspice runs (default is "rsh").

renumber Renumber input lines when an input file has .includes.

rndseed Seed value for random number generator (used by sgauss, sunif, and rnd functions).
If not set, the process Id is used as seed value.

rhost The machine to use for remote ngspice runs, instead of the default one (see the descrip-
tion of the rspice command, below).

rprogram The name of the remote program to use in the rspice command.
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sourcepath A list of the directories to search when a source command is given. The default
is the current directory and the standard ngspice library (/usr/local/lib/ngspice, or
whatever LIBPATH is #defined to in the ngspice source). The command
set sourcepath = ( e:/ D:/ . c:/spice/examples )
will overwrite the default. The search sequence now is: current directory, e:/, d:/, current
directory (again due to .), c:/spice/examples. ’Current directory’ is depending on the OS.

specwindow Windowing for commands spec (17.5.69) or fft (17.5.24). May be one of the
following:
bartlet blackman cosine gaussian hamming hanning none rectangular triangle.

specwindoworder Integer value 2 - 8 (default 2), used by commands spec or fft.

spicepath The program to use for the aspice command. The default is /cad/bin/spice.

strict_errorhandling If set by the user, an error detected during circuit parsing will immedi-
ately lead ngspice to exit with exit code 1 (see 18.5). May be set in files spinit (16.5) or
.spiceinit (16.6) only.

subend The card to end subcircuits (normally .ends).

subinvoke The prefix to invoke subcircuits (normally X).

substart The card to begin subcircuits (normally .subckt).

term The mfb name of the current terminal.

ticmarks An integer value n, n tics (a small ’x’) will be set on your graph. (Arrangement of
the tics ?)

ticlist A list of integers, e.g. ( 4 14 24 ) to set tics (small ’x’) on your graph.(Arrangement of
the tics ?)

units If this is degrees, then all the trig functions will use degrees instead of radians.

unixcom If a command isn’t defined, try to execute it as a UNIX command. Setting this option
has the effect of giving a rehash command, below. This is useful for people who want to
use ngnutmeg as a login shell.

wfont Set the font for the graphics plot in MS Windows. Typical fonts are courier, times,
arial and all others found on your machine. Default is courier.

wfont_size The size of the windows font. Default is depending on systems settings, something
like

width The width of the page for asciiplot and print col (see also 15.6.7).

x11lineararcs Some X11 implementations have poor arc drawing. If you set this option,
Ngspice will plot using an approximation to the curve using straight lines.

xbrushwidth Linewidth for grid, border and graph.

xfont Set the font for the graphics plot in X11 (LINUX, Cygwin, etc.). Input format has still to
be checked.
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xtrtol Set trtol, e.g. to 7, so to avoid the speed reduction with XSPICE (see 16.9). Be aware of
potential precision degradation or convergence issues using this option.

17.8 Scripts

Expressions, functions, constants, commands, variables, vectors, and control structures may be
assembled into scripts within a .control ... .endc section of the input file. The script allows
to automate a more complex ngspice behavior: simulations are performed, output data are the
analyzed, simulations repeated with modified parameters, output vectors for plotting are as-
sembled. The ngspice scripting language is not very powerful, but easily integrated into the
simulation flow.

The ngspice input file for scripting contains the usual circuit netlist, modelcards, and a script,
enclosed in the .control .. .endc section. ngspice is started in interactive mode with the input
file in the command line (or sourced later with the source command). After reading the input
file, the command sequence is immediately processed. Variables or vectors set by previous
commands may be used in commands following their definition. data may be stored, plotted or
grouped into new vectors for additional charts supporting data evaluation.

17.8.1 Variables

Variables are defined and initialized with the set command (17.5). set output=10 will de-
fined the variable output and set it to a (real) number 10. Predefined variables, which are used
inside ngspice for specific purposes, are listed in chapt. 17.7. Variables are accessible globally.
The values of variables may be used in commands by writing $varname where the value of the
variable is to appear, e.g. $output. The special variables $$ and $< refer to the process ID of
the program and a line of input which is read from the terminal when the variable is evaluated,
respectively. If a variable has a name of the form $&word, then word is considered a vector (see
below), and its value is taken to be the value of the variable. If $foo is a valid variable, and is of
type list, then the expression $foo[low-high] represents a range of elements. Either the upper
index or the lower may be left out, and the reverse of a list may be obtained with $foo[len-0].
Also, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise, and $#foo
evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and 0 if it is
a Boolean variable.

17.8.2 Vectors

Ngspice and ngnutmeg data is in the form of vectors: time, voltage, etc. Each vector has a type,
and vectors can be operated on and combined algebraically in ways consistent with their types.
Vectors are normally created as a result of a transient or dc simulation. They are also established
when a data file is read in (see the load command 17.5.36). They can also be created with the
let command 17.5.33 inside a script. If a variable has a name of the form $&word, then ’word’
is considered a vector, and its value is taken to be the value of the variable.
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17.8.3 Commands

Commands have been described in chapter 17.5.

17.8.4 control structures

Control structures have been described in chapter 17.6. Some simple examples will be given
below.

Control structure examples:

Test sequences for ngspice control structures
*vectors are used (except foreach)
*start in interactive mode

.control

* test sequence for while , dowhile
let loop = 0
echo
echo enter loop with "$&loop"
dowhile loop < 3

echo within dowhile loop "$&loop"
let loop = loop + 1

end
echo after dowhile loop "$&loop"
echo
let loop = 0
while loop < 3

echo within while loop "$&loop"
let loop = loop + 1

end
echo after while loop "$&loop"
let loop = 3
echo
echo enter loop with "$&loop"
dowhile loop < 3

echo within dowhile loop "$&loop" $ output expected
let loop = loop + 1

end
echo after dowhile loop "$&loop"
echo
let loop = 3
while loop < 3

echo within while loop "$&loop"
$ no output expected

let loop = loop + 1
end
echo after while loop "$&loop"
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Control structure examples (continued):

* test for while , repeat , if, break
let loop = 0
while loop < 4

let index = 0
repeat

let index = index + 1
if index > 4

break
end

end
echo index "$&index" loop "$&loop"
let loop = loop + 1

end

* test sequence for foreach
echo
foreach outvar 0 0.5 1 1.5

echo parameters: $outvar $ foreach parameters are variables ,
$ not vectors!

end

* test for if ... else ... end
echo
let loop = 0
let index = 1
dowhile loop < 10

let index = index * 2
if index < 128

echo "$&index" lt 128
else

echo "$&index" ge 128
end
let loop = loop + 1

end

* simple test for label , goto
echo
let loop = 0
label starthere
echo start "$&loop"
let loop = loop + 1
if loop < 3

goto starthere
end
echo end "$&loop"
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Control structure examples (continued):

* test for label , nested goto
echo
let loop = 0
label starthere1
echo start nested "$&loop"
let loop = loop + 1
if loop < 3

if loop < 3
goto starthere1

end
end
echo end "$&loop"

* test for label , goto
echo
let index = 0
label starthere2
let loop = 0
echo We are at start with index "$&index" and loop "$&loop"
if index < 6

label inhere
let index = index + 1
if loop < 3

let loop = loop + 1
if index > 1

echo jump2
goto starthere2

end
end
echo jump
goto inhere

end
echo We are at end with index "$&index" and loop "$&loop"
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Control structure examples (continued):

* test goto in while loop
let loop = 0
if 1 $ outer loop to allow nested forward label ’endlabel ’

while loop < 10
if loop > 5

echo jump
goto endlabel

end
let loop = loop + 1

end
echo before $ never reached
label endlabel
echo after "$&loop"

end

*test for using variables , simple test for label , goto
set loop = 0
label starthe
echo start $loop
let loop = $loop + 1 $ expression needs vector at lhs
set loop = "$&loop" $ convert vector contents to variable
if $loop < 3

goto starthe
end
echo end $loop

.endc

17.8.5 Example script ’spectrum’

A typical example script named spectrum is delivered with the ngspice distribution. Even if it
is made obsolete by the internal spec command (see 17.5.69) and especially by the much faster
fft command (see 17.5.24), it may act as a good example for getting acquainted with the ngspice
(or nutmeg) post-processor language.

As a suitable input for spectrum you may run a ring-oscillator, delivered with ngspice in e.g.
test/bsim3soi/ring51_41.cir. For an adequate resolution you will need a simulation time of 1
µs. Then a small control script may start ngspice by loading the R.O. simulation data and start
spectrum.

Small script to start ngspice, read the simulation data and start spectrum:

* t e s t f o r s c r i p t ’ spec t rum ’
. c o n t r o l
l o a d r i n g 5 1 _ 4 1 . o u t
s p e c t r u m 10MEG 2500MEG 1MEG v ( ou t25 ) v ( ou t50 )
. endc
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17.8.6 Example script for random numbers

Generation and test of random numbers with Gaussian distribution

* a g a u s s t e s t i n n g s p i c e
* g e n e r a t e a s e q u e n c e o f g a u s s i a n d i s t r i b u t e d random numbers .
* t e s t t h e d i s t r i b u t i o n by s o r t i n g t h e numbers i n t o
* a h i s t o g r a m ( b u c k e t s )
. c o n t r o l

d e f i n e a g a u s s ( nom , avar , s i g ) ( nom + a v a r / s i g * s g a u s s ( 0 ) )
l e t mc_runs = 200
l e t run = 0
l e t no_buck = 8 $ number o f b u c k e t s
l e t b u c k e t = u n i t v e c ( no_buck ) $ each e l e m e n t c o n t a i n s 1
l e t d e l t a = 3e−11 $ wid th o f each bucke t , depends

$ on a v a r and s i g
l e t l o l i m i t = 1e−09 − 3* d e l t a
l e t h i l i m i t = 1e−09 + 3* d e l t a

dowhi l e run < mc_runs
l e t v a l = a g a u s s (1 e−09 , 1e−10 , 3 ) $ g e t t h e random number
i f ( v a l < l o l i m i t )

l e t b u c k e t [ 0 ] = b u c k e t [ 0 ] + 1 $ ’ lowes t ’ b u c k e t
end
l e t p a r t = 1
dowhi l e p a r t < ( no_buck − 1)

i f ( ( v a l < ( l o l i m i t + p a r t * d e l t a ) ) &
+ ( v a l > ( l o l i m i t + ( p a r t −1)* d e l t a ) ) )

l e t b u c k e t [ p a r t ] = b u c k e t [ p a r t ] + 1
b r e a k

end
l e t p a r t = p a r t + 1

end
i f ( v a l > h i l i m i t )

* ’ h i g h e s t ’ b u c k e t
l e t b u c k e t [ no_buck − 1] = b u c k e t [ no_buck − 1] + 1

end
l e t run = run + 1

end

l e t p a r t = 0
dowhi l e p a r t < no_buck

l e t v a l u e = b u c k e t [ p a r t ] − 1
s e t v a l u e = " $&v a l u e "

* p r i n t t h e b u c k e t s ’ c o n t e n t s
echo $ v a l u e
l e t p a r t = p a r t + 1

end

. endc

. end
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17.8.7 Parameter sweep

While there is no direct command to sweep a device parameter during simulation, you may use
a script to emulate such behavior. The example input file contains of an resistive divider with
R1 and R2, where R1 is swept from a start to a stop value inside of the control section, using
the alter command (see 17.5.3).

Input file with parameter sweep

p a r a m e t e r sweep
* r e s i s t i v e d i v i d e r , R1 swept from s t a r t _ r t o s t o p _ r
VDD 1 0 DC 1

R1 1 2 1k
R2 2 0 1k

. c o n t r o l
l e t s t a r t _ r = 1k
l e t s t o p _ r = 10k
l e t d e l t a _ r = 1k
l e t r _ a c t = s t a r t _ r
* loop
w h i l e r _ a c t l e s t o p _ r

a l t e r r1 r _ a c t
op
p r i n t v ( 2 )
l e t r _ a c t = r _ a c t + d e l t a _ r

end
. endc

. end

17.8.8 Output redirection

The console outputs delivered by commands like print (17.5.45), echo (17.5.21), or others may
be redirected into a text file. ’print vec > filename’ will generate a new file or overwrite
an existing file named ’filename’, ’echo text >�> filename’ will append the new data to the
file ’filename’. Output redirection may be mixed with commands like wrdata.
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Input file with output redirection > and >>

** MOSFET Gain S t a g e (AC ) : Benchmarking I m p l e m e n t a t i o n o f BSIM4 . 0 . 0
** by Weidong Liu 5 / 1 6 / 2 0 0 0 .
** o u t p u t r e d i r e c t i o n i n t o f i l e

M1 3 2 0 0 N1 L=1u W=4u
Rsource 1 2 100k
Rload 3 vdd 25k
Vdd vdd 0 1 . 8
Vin 1 0 1 . 2 ac 0 . 1

. c o n t r o l
ac dec 10 100 1000Meg
p l o t v ( 2 ) v ( 3 )
l e t f l e n = l e n g t h ( f r e q u e n c y ) $ l e n g t h o f t h e v e c t o r
l e t l o o p c o u n t e r = 0
echo o u t p u t t e s t > t e x t . t x t $ s t a r t new f i l e t e s t . t x t
* loop
w h i l e l o o p c o u n t e r l t f l e n

l e t vou t2 = v ( 2 ) [ l o o p c o u n t e r ] $ g e n e r a t e a s i n g l e p o i n t complex v e c t o r
l e t v o u t 2 r e = r e a l ( vou t2 ) $ g e n e r a t e a s i n g l e p o i n t r e a l v e c t o r
l e t vout2 im = imag ( vou t2 ) $ g e n e r a t e a s i n g l e p o i n t i m a g i n a r y v e c t o r
l e t vou t3 = v ( 3 ) [ l o o p c o u n t e r ] $ g e n e r a t e a s i n g l e p o i n t complex v e c t o r
l e t v o u t 3 r e = r e a l ( vou t3 ) $ g e n e r a t e a s i n g l e p o i n t r e a l v e c t o r
l e t vout3 im = imag ( vou t3 ) $ g e n e r a t e a s i n g l e p o i n t i m a g i n a r y v e c t o r
l e t f r e q = f r e q u e n c y [ l o o p c o u n t e r ] $ g e n e r a t e a s i n g l e p o i n t v e c t o r
echo bbb " $&f r e q " " $&v o u t 2 r e " " $&vout2im " " $&v o u t 3 r e " " $&vout3im " >>

+ t e x t . t x t $ append t e x t and d a t a t o f i l e ( c o n t i n u e d fromm l i n e above )
l e t l o o p c o u n t e r = l o o p c o u n t e r + 1

end
. endc

.MODEL N1 NMOS LEVEL=14 VERSION = 4 . 3 . 0 TNOM=27

. end

17.9 Scattering parameters (s-parameters)

17.9.1 Intro

A command line script, available from the ngspice distribution at examples/control_structs/s-
param.cir, together with the command wrs2p (see chapt. 17.5.87) allows to calculate, print
and plot the scattering parameters S11, S21, S12, and S22 of any two port circuit at varying
frequencies.

The printed output using wrs2p is a Touchstone® version 1 format file. The file follows the
format according to The Touchstone File Format Specification, Version 2.0, available from here.

http://www.eda.org/ibis/touchstone_ver2.0/
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An example is given as number 13 on page 15 of that specification.

17.9.2 S-parameter measurement basics

S-parameters allow a two-port description not just by permuting I1, U1, I2, U2, but using a
superposition, leading to a power view of the port (We only look at two-ports here, because
multi-ports are not (yet?) implemented.).

You may start with the effective power, being negative or positive

P = u · i (17.1)

The value of P may be the difference of two real numbers, with K being another real number.

ui=P= a2−b2 = (a+b)(a−b) = (a+b)(KK−1)(a−b) = {K(a+b)}
{

K−1(a−b)
}

(17.2)

Thus you get

K−1u = a+b (17.3)

Ki = a−b (17.4)

and finally

a =
u+K2i

2K
(17.5)

b =
u−K2i

2K
(17.6)

By introducing the reference resistance Z0 :=K2 > 0 we get finally the Heaviside transformation

a =
u+Z0i
2
√

Z0
, b =

u−Z0i
2
√

Z0
(17.7)

In case of our two-port we subject our variables to a Heaviside transformation

a1 =
U1 +Z0I1

2
√

Z0
b1 =

U1−Z0I1

2
√

Z0
(17.8)

a2 =
U2 +Z0I2

2
√

Z0
b2 =

U2−Z0I2

2
√

Z0
(17.9)

The s-matrix for a two-port then is
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(
b1
b2

)
=

(
s11 s12
s21 s22

)(
a1
a2

)
(17.10)

Two obtain s11 we have to set a2 = 0. This is accomplished by loading the output port exactly
with the reference resistance Z0, which sinks a current I2 =−U2/Z0 from the port.

s11 =

(
b1

a1

)
a2=0

(17.11)

s11 =
U1−Z0I1

U1 +Z0I1
(17.12)

Loading the input port from an ac source U0 via a resistor with resistance value Z0, we obtain
the relation

U0 = Z0I1 +U1 (17.13)

Entering this into 17.12, we get

s11 =
2U1−U0

U0
(17.14)

For s21 we obtain similarly

s21 =

(
b2

a1

)
a2=0

(17.15)

s21 =
U2−Z0I2

U1 +Z0I1
=

2U2

U0
(17.16)

Equations 17.14 and 17.16 now tell us how to measure s11 and s21: Measure U1 at the input port,
multiply by 2 using an E source, subtracting U0 which for simplicity is set to 1, and divide by
U0. At the same time measure U2 at the output port, multiply by 2 and divide by U0. Biasing and
measuring is done by subcircuit S_PARAM. To obtain s22 and s12, you have to exchange the
input and output ports of your two-port and do the same measurement again. This is achieved
by switching resistors from low (1mΩ) to high (1T Ω) and thus switching the input and output
ports.

17.9.3 Usage

Copy and then edit s-param.cir. You will find this file in directory /examples/control_structs of
the ngspice distribution.

The reference resistance (often called characteristic impedance) for the measurements is added
as a parameter

.param Rbase=50

The bias voltages at the input and output ports of the circuit are set as parameters as well:
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.param Vbias_in=1 Vbias_out=2

Place your circuit at the appropriate place in the input file, e.g. replacing the existing example
circuits. The input port of your circuit has two nodes in, 0. The output port has the two nodes
out, 0. The bias voltages are connected to your circuit via the resistances of value Rbase at the
input and output respectively. This may be of importance for the operating point calculations if
your circuit draws a large dc current.

Now edit the ac commands (see 17.5.1) according to the circuit provided, e.g.

ac lin 100 2.5MEG 250MEG $ use for Tschebyschef

Be careful to keep both ac lines in the .control ... .endc section the same and only change both
in equal measure!

Select the plot commands (lin/log, or smith grid) or the ’write to file’ commands (write, wrdata,
or wrs2p) according to your needs.

Run ngspice in interactive mode

ngspice s-param.cir

17.10 MISCELLANEOUS (old stuff, has to be checked for
relevance)

C-shell type quoting with “ and “, and backquote substitution may be used. Within single
quotes, no further substitution (like history substitution) is done, and within double quotes,
the words are kept together but further substitution is done. Any text between backquotes is
replaced by the result of executing the text as a command to the shell.

History substitutions, similar to C-shell history substitutions, are also available - see the C-shell
manual page for all of the details. The characters ~, @{, and @} have the same effects as
they do in the C-Shell, i.e., home directory and alternative expansion. It is possible to use the
wildcard characters *, ?, [, and ] also, but only if you unset noglob first. This makes them rather
useless for typing algebraic expressions, so you should set noglob again after you are done with
wildcard expansion. Note that the pattern [^abc] matches all characters except a, b, and c.

If X is being used, the cursor may be positioned at any point on the screen when the window
is up and characters typed at the keyboard are added to the window at that point. The window
may then be sent to a printer using the xpr(1) program.

17.11 Bugs (old stuff, has to be checked for relevance)

When defining aliases like alias pdb plot db( ’!:1’ - ’!:2’ ) you must be careful to quote the
argument list substitutions in this manner. If you quote the whole argument it might not work
properly.

In a user-defined function, the arguments cannot be part of a name that uses the plot.vec syntax.
For example: define check(v(1)) cos(tran1.v(1)) does not work.



336 CHAPTER 17. INTERACTIVE INTERPRETER



Chapter 18

Ngspice User Interfaces

ngspice offers a variety of user interfaces. For an overview (several screen shots) please have a
look at the ngspice web page.

18.1 MS Windows Graphical User Interface

If compiled properly (e.g. using the –with-wingui flag for ./configure under MINGW), ngspice
for Windows offers a simple graphical user interface. In fact this interface does not offer much
more for data input than a console would offer, e.g. command line inputs, command history
and program text output. First of all it applies the Windows api for data plotting. If you run the
sample input file given below, you will get an output as shown in fig. 16.1.

Input file:

***** S i n g l e NMOS T r a n s i s t o r For BSIM3V3 . 1
g e n e r a l p u r p o s e check ( Id−Vd ) ***
*
*** c i r c u i t d e s c r i p t i o n ***
m1 2 1 3 0 n1 L=0 .6 u W=10.0 u
vgs 1 0 3 . 5
vds 2 0 3 . 5
v s s 3 0 0
*
. dc vds 0 3 . 5 0 . 0 5 vgs 0 3 . 5 0 . 5
*
. c o n t r o l
run
p l o t v s s # b r a nc h
. endc
*
* UCB p a r a m e t e r s BSIM3v3 . 2
. i n c l u d e . . / Exam_BSIM3 / Mode lca rds / mode lca rd . nmos
. i n c l u d e . . / Exam_BSIM3 / Mode lca rds / mode lca rd . pmos
*
. end

337

http://sourceforge.net/project/screenshots.php?group_id=38962
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The GUI consists of an I/O port (lower window) and a graphics window, created by the plot
command.

Figure 18.1: MS Windows GUI

The output window displays messages issued by ngspice. You may scroll the window to get
more of the text. The input box (white box) may be activated by a mouse click to accept any
of the valid ngspice commends. The lower left output bar displays the actual input file. ngspice
progress during setup and simulation is shown in the progress window (“–ready–”). The Quit
button allow to interrupt ngspice. If ngspice is actively simulating, due to using only a single
thread, this interrupt has to wait until the window is accessible from within ngspice, e.g. during
an update of the progress window.

In the plot window there is the upper left button, which activated a drop down menu. You may
select to print the plot window shown (a very simple printer interface, to be improved), set
up any of the printers available on your computer, or issue a postscript file of the actual plot
window, either black&white or colored.
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Instead of plotting with black background, you may set the background to any other color,
preferably to “white” using the command shown below.

Input file modification for white background:

. c o n t r o l
run
* w h i t e background
s e t c o l o r 0 = w h i t e
* b l a c k g r i d and t e x t ( on ly needed wi th X11 , a u t o m a t i c wi th MS Win )
s e t c o l o r 1 = b l a c k
* wide r g r i d and p l o t l i n e s
s e t x b r u s h w i d t h =2
p l o t v s s # b r a nc h
. endc

Figure 18.2: Plotting with white background

18.2 MS Windows Console

If the –with-wingui flag for ./configure under MINGW is omitted (see 32.2.5) or console_debug
or console_release is selected in the MS Visual Studio configuration manager, then ngspice will
compile without any internal graphical input or output capability. This may be useful if you
apply ngspice in a pipe inside the MSYS window, or use it being called from another program,
and just generating output files from a given input. The plot (17.5.43) command will not do
and leads to an error message.



340 CHAPTER 18. NGSPICE USER INTERFACES

Only on the ngspice console binary in MS Windows input/output redirection is possible, if
ngspice is called (e.g. within a MSYS shell or from a shell script) like

$ ngspice < input.

This feature is used in the new CMC model test suite (to be described elsewhere), thus requires
a console binary.

You still may generate graphics output plots or prints by gnuplot (17.5.26), if installed properly
(18.7), or by selecting a suitable printing option (18.6).

18.3 LINUX

The standard user interface is a console for input and the X11 graphics system for output with
the interactive plot (17.5.43) command. If ngspice is compiled with the –without-x flag for
./configure, a console application without graphical interface results. For more sophisticated
input user interfaces please have a look at chapt. 18.8.

18.4 CygWin

The CygWin interface is similar to the LINUX interface (18.3), i.e. console input and X11
graphics output. To avoid the warning of a missing graphical user interface, you have to start
the X11 window manager by issuing the commands

$ export DISPLAY=:0.0

$ xwin -multiwindow -clipboard &

inside of the CygWin window before starting ngspice.

18.5 Error handling

Error messages and error handling in ngspice have grown over the years, include a lot of “tra-
ditional” behavior and thus are not very systematic and consistent.

Error messages may occur with the token ’Error:’. Often the errors are non-recoverable and will
lead to exiting ngspice with error code 1. Sometimes, however, you will get an error message,
but ngspice will continue, and may either bail out later because the error has propagated into
the simulation, sometimes ngspice will continue, deliver wrong results and exit with error code
0 (no error detected!).

In addition ngspice may issue warning messages like ’Warning: ...’. These should cover recov-
erable errors only.

So there is still work to be done to define a consistent error messaging, recovery or exiting. A
first step is the user definable variable strict_errorhandling. This variable may be set in files
spinit (16.5) or .spiceinit (16.6) to immediately stop ngspice, after an error is detected during
parsing the circuit. An error message is sent, the ngspice exit code is 1. This behavior deviates
from traditional spice error handling and thus is introduced as an option only.

XSPICE error messages are explained in chapter 29.
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18.6 Postscript printing options

This info is compiled from Roger L. Traylor’s web page. All the commands and variables you
can set are described in chapt. 17.5. The corresponding input file for the examples given below
is listed in chapt. 21.1. Just add the .control section to this file and run in interactive mode by

$ ngspice xspice_c1_print.cir

================================================================

One way is to setup your printing like this:

.control

set hcopydevtype=postscript

op

run

plot vcc coll emit

hardcopy temp.ps vcc coll emit

.endc

Then print the postscript file temp.ps to a postscript printer.

================================================================

You can add color traces to it if you wish:

.control

set hcopydevtype=postscript

* allow color and set background color if set to value > 0

set hcopypscolor=1

*color0 is background color

*color1 is the grid and text color

*colors 2-15 are for the vectors

set color0=rgb:f/f/f

set color1=rgb:0/0/0

op

run

hardcopy temp.ps vcc coll emit

.endc

Then print the postscript file temp.ps to a postscript printer.

================================================================

You can also direct your output directly to a designated printer (not available in MS Windows):

.control

set hcopydevtype=postscript

http://web.engr.oregonstate.edu/~traylor/ece391/ngspice_printing
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*send output to the printer kec3112-clr

set hcopydev=kec3112-clr

hardcopy out.tmp vcc coll emit

=================================================================

18.7 Gnuplot

Install Gnuplot (on LINUX available from the distribution, on Windows available here). On
Windows expand the zip file to a directory of your choice, add the path <any directory>/gnuplot/bin
to the PATH variable, and go... The command to invoke Gnuplot (17.5.26) is limited however
to x/y plots (no polar etc.).

18.8 Integration with CAD software and “third party” GUIs

In this chapter you will find some links and comments on GUIs for ngspice offered from other
projects and on the integration of ngspice into a circuit development flow. The data given rely
mostly on information available from the web and thus is out of our control. It also may be far
from complete. The GUIs KJWaves and GNUSpiceGUI help you to navigate the commands
to need to perform your simulation. XCircuit and the GEDA tools gschem and gnetlist offer
integrating schematic capture and simulation.

18.8.1 KJWaves

KJWaves was written to be a cross-platform SPICE tool in pure Java. It aids in viewing, mod-
ifying, and simulating SPICE CIRCUIT files. Output from SPICE3 (ngspice) can be read
and displayed. Resulting graphs may be printed and saved. The Java executable will run
under LINUX and Windows (and maybe other OSs). The development site is available at
http://sourceforge.net/projects/kjwaves/. You may find the project home page at http://www.comefly.us/.

18.8.2 GNU Spice GUI

Another GUI, to be found at http://sourceforge.net/projects/gspiceui/.

18.8.3 XCircuit

CYGWIN and especially LINUX users may find XCircuit valuable to establish a development
flow including schematic capture and circuit simulation.

http://www.tatsuromatsuoka.com/gnuplot/Eng/winbin/
http://sourceforge.net/projects/kjwaves/
http://www.comefly.us/
http://sourceforge.net/projects/gspiceui/
http://opencircuitdesign.com/xcircuit/
http://opencircuitdesign.com/xcircuit/tutorial/tutorial2.html
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18.8.4 GEDA

The gEDA project is developing a full GPL‘d suite and toolkit of Electronic Design Automation
tools for use with a LINUX. Ngspice may be integrated into the development flow. Two web
sites offer tutorials using gschem and gnetlist with ngspice:

http://geda.seul.org/wiki/geda:csygas

http://geda.seul.org/wiki/geda:ngspice_and_gschem

18.8.5 CppSim

A complete simulation environment called CppSim has been developed and made available for
system level simulation of complex mixed signal circuits. ngspice has been integrated into the
simulation flow, as described here.

18.8.6 NGSPICE Online

A web browser based interface is offered here. Simulation is performed on a remote server. The
project is not directly linked to our ngspice development project.

18.8.7 Spicy Schematics

An IPAD and web interface (including schematics entry) to ngspice is offered here.Simulation
is performed on a remote server.

18.8.8 MSEspice

A graphical front end to ngspice, using the Free Pascal cross platform RAD environment
MSEide+MSEgui.

18.8.9 PartSim

A web based guiin your browser, including schematics entry. Simulation is performed on a
remote server.

http://www.gpleda.org/
http://geda.seul.org/wiki/geda:csygas
http://geda.seul.org/wiki/geda:ngspice_and_gschem
http://www.cppsim.com/index.html
http://www.cppsim.com/about_ngspice.html
http://www.ngspice.com/
http://www.ischematics.com/
http://sourceforge.net/projects/mseuniverse/
http://gitorious.org/mseide-msegui
http://www.partsim.com/
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Chapter 19

ngspice as shared library or dynamic link
library

ngspice may be compiled as a shared library. This allows adding ngspice to an application
which then gains control over the simulator. The shared module offers an interface which
exports functions controlling the simulator and callback functions for feedback.

So you may send an input "file" with a netlist to ngspice, start the simulation in a separate thread,
read back simulation data at each time point, stop the simulator depending on some condition,
alter device or model parameters and then resume the simulation.

Shared ngspice does not have any user interface. The calling process is responsible for this. It
may offer a graphical user interface, add plotting capability or any other interactive element.
You may develop and optimize these user interface elements without a need to alter the ngspice
source code itself, using a console application or GUIs like gtk, Delphi, Qt or others.

19.1 Compile options

19.1.1 How to get the sources

Currently (as of ngspice-25 being the actual release), you will have to use the direct loading of
the sources from the git repository (see chapt. 32.1.2).

19.1.2 LINUX, MINGW, CYGWIN

Compilation is done as described in chapts. 32.1 or 32.2.1. Use the configure option --with-ngshared
instead of --with-x or --with-wingui.

Other operation systems (Mac OS, BSD, ...) have not been tested so far. Your input is welcome!

19.1.3 MS Visual Studio

Compilation is similar to what has been described in chapt. 32.2.3. There is however a ded-
icated project file coming with the source code to generate ngspice.dll. Go to the directory
visualc-shared and start the project with double clicking on sharedspice.sln.

345
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19.2 Linking shared ngspice to a calling application

Basically there are two methods (as with all *.so, *.dll libraries). The caller may link to a (small)
library file during compiling/linking, and then immediately search for the shared library upon
being started. It is also possible to dynamically load the ngspice shared library at runtime using
the dlopen/LoadLibrary mechanisms.

19.2.1 Linking during creating the caller

While creating the ngspice shared lib, not only the *.so (*.dll) file is created, but also a small
library file, which just includes references to the exported symbols. Depending on the OS, these
may be called libngspice.dll.a, ngspice.lib. Linux and MINGW also allow linking to the shared
object itself. The shared object is not included into the executable component but is tied to the
execution.

19.2.2 Loading at runtime

dlopen (LINUX) or LoadLibrary (MS Windows) will load libngspice.so or ngspice.dll into the
address space of the caller at runtime. The functions return a handle which may be used to
acquire the pointers to the functions exported by libngspice.so. Detaching ngspice at runtime is
equally possible (using dlclose/FreeLibrary), after the background thread has been stopped and
all callbacks have returned.

19.3 Shared ngspice API

The sources for the ngspice shared library API are contained in a single c file (sharedspice.c)
and a corresponding header file sharedspice.h. The type and function declarations are contained
in sharedspice.h, which may be directly added to the calling application, if written in C or C++.

19.3.1 structs and types defined for transporting data

pvector_info is returned by the exported function ngGet_Vec_Info (see 19.3.2.5). Adresses of
the vector name, type, real or complex data are transferred and may be read asynchronously
during or after the simulation.

vector_info

t y p e d e f s t r u c t v e c t o r _ i n f o {
c h a r *v_name ; / * Same as so_vname . * /
i n t v _ t yp e ; / * Same as s o _ v t y p e . * /
s h o r t v _ f l a g s ; / * F l a g s ( a c o m b i n a t i o n o f VF_ * ) . * /
do ub l e * v _ r e a l d a t a ; / * Rea l d a t a . * /
ngcomplex_t * v_compdata ; / * Complex d a t a . * /
i n t v _ l e n g t h ; / * Length o f t h e v e c t o r . * /

} v e c t o r _ i n f o , * p v e c t o r _ i n f o ;
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The next two structures are used by the callback function SendInitData (see 19.3.3.5). Each
time a new plot is generated during simulation, e.g. when a sequence of op, ac and tran is used
or commands like linearize or fft are invoked, the function is called once by ngspice. Among
its parameters you find a pointer to a struct vecinfoall, which includes an array of vecinfo, one
for each vector. Pointers to the struct dvec, containing the vector, are included. This struct is
declared in header file src/include/ngspice/dvec.h.

vecinfo

t y p e d e f s t r u c t v e c i n f o
{

i n t number ; / * number o f v e c t o r , a s p o s t i o n i n t h e
l i n k e d l i s t o f v e c t o r s , s t a r t s w i th 0 * /

c h a r * vecname ; / * name of t h e a c t u a l v e c t o r * /
boo l i s _ r e a l ; / * TRUE i f t h e a c t u a l v e c t o r has r e a l d a t a * /
vo id * pdvec ; / * a vo id p o i n t e r t o s t r u c t dvec *d , t h e

a c t u a l v e c t o r * /
vo id * p d v e c s c a l e ; / * a vo id p o i n t e r t o s t r u c t dvec * ds ,

t h e s c a l e v e c t o r * /
} v e c i n f o , * p v e c i n f o ;

vecinfoall

t y p e d e f s t r u c t v e c i n f o a l l
{

/ * t h e p l o t * /
c h a r *name ;
c h a r * t i t l e ;
c h a r * d a t e ;
c h a r * t y p e ;
i n t v e c c o u n t ;

/ * t h e d a t a as an a r r a y o f v e c i n f o wi th
l e n g t h e q u a l t o t h e number o f v e c t o r s
i n t h e p l o t * /

p v e c i n f o * vecs ;

} v e c i n f o a l l , * p v e c i n f o a l l ;

The next two structures are used by the callback function SendData (see 19.3.3.4). Each time a
new data point (e.g. time value and simulation output value(s)) is added to the vector structure
of the current plot, the function SendData is called by ngspice, among its parameters the actual
pointer pvecvaluesall, which contains an array of pointers to pvecvalues, one for each vector.
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vecvalues

t y p e d e f s t r u c t v e c v a l u e s {
c h a r * name ; / * name of a s p e c i f i c v e c t o r * /
do ub l e c r e a l ; / * a c t u a l d a t a v a l u e * /
do ub l e cimag ; / * a c t u a l d a t a v a l u e * /
boo l i s _ s c a l e ; / * i f ’ name ’ i s t h e s c a l e v e c t o r * /
boo l i s _ c o m p l e x ; / * i f t h e d a t a a r e complex numbers * /

} v e c v a l u e s , * p v e c v a l u e s ;

Pointer vecvaluesall to be found as parameter to callback function SendData.

vecvaluesall

t y p e d e f s t r u c t v e c v a l u e s a l l {
i n t v e c c o u n t ; / * number o f v e c t o r s i n p l o t * /
i n t v e c i n d e x ; / * i n d e x of a c t u a l s e t o f v e c t o r s , i . e .

t h e number o f a c c e p t e d d a t a p o i n t s * /
p v e c v a l u e s * v e c s a ; / * v a l u e s o f a c t u a l s e t o f v e c t o r s ,

i n d e x e d from 0 t o v e c c o u n t − 1 * /
} v e c v a l u e s a l l , * p v e c v a l u e s a l l ;

19.3.2 Exported functions

The functions listed in this chapter are the (only) symbols exported by the shared library.

19.3.2.1 int ngSpice_Init(SendChar*, SendStat*, ControlledExit*, SendData*, SendInit-
Data*, BGThreadRunning*, void)

After caller has loaded ngspice.dll, the simulator has to be initialized by calling ngSpice_Init(...).
Address pointers of several callback functions (see 19.3.3), which are to be defined in the caller,
are sent to ngspice.dll. The int return value is not used.

Pointers to callback functions (details see 19.3.3):

SendChar* callback function for reading printf, fprintf, fputs (NULL allowed)

SendStat* callback function for reading status string and percent value (NULL allowed)

ControlledExit* callback function for transferring a flag to caller, generated by ngspice upon
a call to function controlled_exit. May be used by caller to detach ngspice.dll, if dynami-
cally loaded or to try any other recovery method, or to exit. (required)

SendData* callback function for sending an array of structs containing data values of all vec-
tors in the current plot (simulation output) (NULL allowed)

SendInitData* callback function for sending an array of structs containing info on all vectors
in the current plot (immediately before simulation starts) (NULL allowed)
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BGThreadRunning* callback function for sending a boolean signal (true if thread is running)
(NULL allowed)

void* Using the void pointer, you may send the object address of the calling function (’self’
or ’this’ pointer) to ngspice.dll. This pointer will be returned unmodified by any callback
function (see the *void pointers in chapter 19.3.3). Callback functions are to be defined
in the global section of the caller. Because they now have got the object address of the
calling function, they may direct their actions to the calling object.

19.3.2.2 int ngSpice_Init_Sync(GetVSRCData* , GetISRCData* , GetSyncData* , int*,
void*)

see chapt. 19.6.

19.3.2.3 int ngSpice_Command(char*)

Send a valid command (see the control or interactive commands) from caller to ngspice.dll.
Will be executed immediately (as if in interactive mode). Some commands are rejected (e.g.
’plot’, because there is no graphics interface). Command ’quit’ will remove internal data, and
then send a notice to caller via ngexit(). The function returns a ’1’ upon error, otherwise ’0’.

19.3.2.4 bool ngSpice_running (void)

Checks if ngspice is running in its background thread (returning ’true’).

19.3.2.5 pvector_info ngGet_Vec_Info(char*)

uses the name of a vector (may be in the form ’vectorname’ or <plotname>.vectorname) as
parameter and returns a pointer to a vector_info struct. The caller may then directly assess the
vector data (but better should not modify them).

19.3.2.6 int ngSpice_Circ(char**)

sends an array of null-terminated char* to ngspice.dll. Each char* contains a single line of a
circuit (Each line is like it is found in an input file *.sp.). The last entry to char** has to be
NULL. Upon receiving the array, ngspice.dll will immediately parse the input and set up the
circuit structure (as if the circuit is loaded from a file by the ’source’ command). The function
returns a ’1’ upon error, otherwise ’0’.

19.3.2.7 char* ngSpice_CurPlot(void)

returns to the caller a pointer to the name of the current plot. For a definition of the term ’plot’
see chapt. 17.3.
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19.3.2.8 char** ngSpice_AllPlots(void)

returns to the caller a pointer to an array of all plots (listed by their typename).

19.3.2.9 char** ngSpice_AllVecs(char*)

returns to the caller a pointer to an array of all vector names in the plot named by the string in
the argument.

19.3.2.10 bool ngSpice_SetBkpt(double)

see chapt. 19.6.

19.3.3 Callback functions

Callback functions are a means to return data from ngspice to the caller. These functions are
defined as global functions in the caller, so to be reachable by the C-coded ngspice. They are
declared according to the typedefs given below. ngspice receives their addresses from the caller
upon initialization with the ngSpice_Init(...) function (see 19.3.2.1). If the caller will not make
use of a callback, it may send NULL instead of the address (except for ControlledExit, which
is always required).

If ngspice is run in the background thread (19.4.2), the callback functions (defined in the caller)
also are called from within that thread. One has to be carefully judging how this behavior might
influence the caller, where now you have the primary and the background thread running in
parallel. So make the callback function thread safe. The integer identification number is only
used if you run several shared libraries in parallel (see chapt. 19.6). Three additional callback
function are described in chapt. 19.6.3.

19.3.3.1 typedef int (SendChar)(char*, int, void*)

char* string to be sent to caller output

int identification number of calling ngspice shared lib (default is 0, see chapt. 19.6)

void* return pointer received from caller during initialization, e.g. pointer to object having sent
the request

Sending output from stdout, stderr to caller. ngspice printf, fprintf, fputs, fputc functions are
redirected to this function. The char* string is generated by assembling the print outputs of
the above mentioned functions according to the following rules: The string commences with
"stdout ", if directed to stdout by ngspice (with "stderr " respectively); all tokens are assembled
in sequence, taking the printf format specifiers into account, until ’\n’ is hit. If ’set addescape’
is given in .spiceinit, the escape character \ is added to any character from $[]\" found in the
string.

Each callback function has a void pointer as the last parameter. This is useful in object ori-
ented programming. You may have sent the this (or self) pointer of the caller’s class object to
ngspice.dll during calling ngSpice_Init (19.3.2.1). The pointer is returned unmodified by each
callback, so the callback function may identify the class object which has initialized ngspice.dll.
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19.3.3.2 typedef int (SendStat)(char*, int, void*)

char* simulation status and value (in percent) to be sent to caller

int identification number of calling ngspice shared lib (default is 0, see chapt. 19.6)

void* return pointer received from caller

sending simulation status to caller, e.g. the string ’tran 34.5%’.

19.3.3.3 typedef int (ControlledExit)(int, bool, bool, int, void*)

int exit status

bool if true: immediate unloading dll, if false: just set flag, unload is done when function has
returned

bool if true: exit upon ’quit’, if false: exit due to ngspice.dll error

int identification number of calling ngspice shared lib (default is 0, see chapt. 19.6)

void* return pointer received from caller

asking for a reaction after controlled exit.

19.3.3.4 typedef int (SendData)(pvecvaluesall, int, int, void*

vecvaluesall* pointer to array of structs containing actual values from all vectors

int number of structs (one per vector)

int identification number of calling ngspice shared lib (default is 0, see chapt. 19.6)

void* return pointer received from caller

send back actual vector data.

19.3.3.5 typedef int (SendInitData)(pvecinfoall, int, void*)

vecinfoall* pointer to array of structs containing data from all vectors right after initialization

int identification number of calling ngspice shared lib (default is 0, see chapt. 19.6)

void* return pointer received from caller

send back initialization vector data.
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19.3.3.6 typedef int (BGThreadRunning)(bool, int, void*)

bool true if background thread is running

int identification number of calling ngspice shared lib (default is 0, see chapt. 19.6)

void* return pointer received from caller

indicate if background thread is running

19.4 General remarks on using the API

19.4.1 Loading a netlist

Basically the input to shared ngspice is the same as if you would start a ngspice batch job, e.g.
you enter a netlist and the simulation command (any .dot analysis command like .tran, .op, or
.dc etc. as found in chapt. 15.3), as well as suitable options.

Typically you should not include a .control section in your input file. Any script described in a
.control section for standard ngspice should better be emulated by the caller and be sent directly
to ngspice.dll. Start the simulation according to chapt. 19.4.2 in an extra thread.

As an alternative, only the netlist has to be entered (without analysis command), then you may
use any interactive command as listed in chapt. 17.5 (except for the plot command).

The “typical usage” examples given below are excerpted from a caller written in C.

19.4.1.1 Loading from file

As with interactive ngspice, you may use the ngspice internal command source (17.5.68) to
load a complete netlist from a file.

Typical usage:

ngSpice_Command ( " s o u r c e . . / examples / adder_mos . c i r " ) ;

19.4.1.2 Loading line by line

As with interactive ngspice, you may use the ngspice internal command circbyline (17.5.10) to
send a netlist line by line to the ngspice circuit parser.

Typical usage:

ngSpice_Command ( " c i r c b y l i n e f a i l t e s t " ) ;
ngSpice_Command ( " c i r c b y l i n e V1 1 0 1 " ) ;
ngSpice_Command ( " c i r c b y l i n e R1 1 0 1 " ) ;
ngSpice_Command ( " c i r c b y l i n e . dc V1 0 1 0 . 1 " ) ;
ngSpice_Command ( " c i r c b y l i n e . end " ) ;

The first line is a title line, which will be ignored during circuit parsing. As soon as the line
“.end” has been sent to ngspice, circuit parsing commences.
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19.4.1.3 Loading as a string array

Typical usage:

c i r c a r r a y = ( c h a r **) m a l l oc ( s i z e o f ( c h a r * ) * 7 ) ;
c i r c a r r a y [ 0 ] = s t r d u p ( " t e s t a r r a y " ) ;
c i r c a r r a y [ 1 ] = s t r d u p ( " V1 1 0 1 " ) ;
c i r c a r r a y [ 2 ] = s t r d u p ( " R1 1 2 1 " ) ;
c i r c a r r a y [ 3 ] = s t r d u p ( " C1 2 0 1 i c = 0 " ) ;
c i r c a r r a y [ 4 ] = s t r d u p ( " . t r a n 10u 3 u i c " ) ;
c i r c a r r a y [ 5 ] = s t r d u p ( " . end " ) ;
c i r c a r r a y [ 6 ] = NULL;
n g S p i c e _ C i r c ( c i r c a r r a y ) ;

An array of char pointers is malloc’d, each netlist line is then copied to the array. strdup will
care for the memory allocation. The first entry to the array is a title line, the last entry has to
contain NULL. ngSpice_Circ(circarray); sends the array to ngspice, where circuit parsing is
started immediately. Don’t forget to free the array after sending it, to avoid a memory leak.

19.4.2 Running the simulation

The following commands are used to start the simulator in its own thread, halt the simulation
and resume it again. The extra (background) thread enables the caller to continue with other
tasks in the main thread, e.g. watching its own event loop. Of course you have to take care
that the caller will not exit before ngspice is finished, otherwise you immediately will loose all
data. After having halted the simulator by suspending the background thread, you may assess
data, change ngspice parameters, or read output data using the caller’s main thread, before you
resume simulation using a background thread again. While the background thread is running,
ngspice will reject any other command sent by ngSpice_Command.

Typical usage:

ngSpice_Command ( " bg_run " ) ;
. . .
ngSpice_Command ( " b g _ h a l t " ) ;
. . .
ngSpice_Command ( " bg_resume " ) ;

Basically you may send the commands ’run’ or ’resume’ (no prefix bg_), starting ngspice within
the main thread. The caller then has to wait until ngspice returns from simulation. A command
’halt’ is not available then.

After simulation is finished (test with callback 19.3.3.6), you may send other commands from
chapt. 17.5, emulating any .control script. These commands are executed in the main thread,
which should be o.k., because execution time is typically short.
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19.4.3 Accessing data

19.4.3.1 Synchronous access

The callback functions SendInitData (19.3.3.5) and SendData (19.3.3.4) allow access to sim-
ulator output data synchronized with the simulation progress.

Each time a new plot is generated during simulation, e.g. when a sequence of op, ac and tran
is used or commands like linearize or fft are invoked, the callback SendInitData is called by
ngspice. Immediately after setting up the vector structure of the new plot, the function is called
once. Its parameter is a pointer to the structure vecinfoall (19.3.1), which contains an array of
structures vecinfo, one for each vector in the actual plot. You may simply use vecname to get
the name of any vector. This time the vectors are still empty, but pointers to the vector structure
are available.

Each time a new data point (e.g. time value and simulation output value(s)) is added to the
vector structure of the current plot, the function SendData is called by ngspice. This allows
you to immediately access the simulation output synchronized with the simulation time, e.g.
to interface it to a runtime plot or to use it for some controlled simulation by stopping the
simulation based on a condition, altering parameters and resume the simulation. SendData
returns a structure vecvaluesall as parameter, which contains an array of structures vecvalues,
one for each vector.

Some code to demonstrate the callback function usage is referenced below (19.5).

19.4.3.2 Asynchronous access

During simulation, while the background thread is running, or after it is finished, you may
use the functions ngSpice_CurPlot (19.3.2.7), ngSpice_AllPlots (19.3.2.8), ngSpice_AllVecs
(19.3.2.9) to retrieve information about vectors available, and function ngGet_Vec_Info (19.3.2.5)
to obtain data from a vector and its corresponding scale vector. The timing of the caller and the
simulation progress are independent from each other and not synchronized.

Again some code to demonstrate the callback function usage is referenced below (19.5).

19.4.4 Altering model or device parameters

After halting ngspice by stopping the background thread (19.4.2), nearly all ngspice commands
are available. Especially alter (17.5.3) and altermod (17.5.4) may be used to change device
or model parameters. After the modification, the simulation may be resumed immediately.
Changes to a circuit netlist, however, are not possible. You would need to load a complete new
netlist (19.4.1) and restart the simulation from the beginning.

19.4.5 Output

After the simulation is finished, use the ngspice commands write (17.5.86) or wrdata (17.5.85)
to output data to a file as usual, use the print command (17.5.45) to retrieve data via callback
SendChar (19.3.3.1), or refer to accessing the data as described in chapter 19.4.3.
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Typical usage:

ngSpice_Command ( " w r i t e t e s t o u t . raw V ( 2 ) " ) ;
ngSpice_Command ( " p r i n t V ( 2 ) " ) ;

19.4.6 Error handling

There are several occasions where standard ngspice suffers from an error, cannot recover in-
ternally and then exits. If this is happening to the shared module this would mean that the
parent application, the caller, is also forced to exit. Therefore (if not suffering form a seg fault)
ngspice.dll will call the function ’controlled_exit’ as usual, this now calls the callback function
’ControlledExit’ (19.3.3.3), which hands over the request for exiting to the caller. The caller
now has the task to handle the exit code for ngspice.

If ngspice has been linked at runtime by dlopen/LoadLibrary (see 19.2.2), the callback may
close all threads, and then detach ngspice.dll by invoking dlclose/FreeLibrary. The caller may
then restart ngspice by another loading and initialization (19.3.2.1).

If ngspice is included during linking the caller (see 19.2.1), there is not yet a good and general
solution to error handling, if the error is non-recoverable from inside ngspice.

19.5 Example applications

Three executables (coming with source code) serve as examples for controlling ngspice. These
are not meant to be "productive" programs, but just give some commented example usages of
the interface.

ng_start.exe is a MS Windows application loading ngspice.dll dynamically. All functions and
callbacks of the interface are assessed. The source code, generated with Turbo Delphi 2006,
may be found here, the binaries compiled for 32 Bit are here.

Two console applications, compilable with LINUX, CYGWIN, MINGW or MS Visual Studio,
are available here, demonstrating either linking upon start-up or loading shared ngspice dynam-
ically at runtime. A simple feedback loop is shown in tests 3 and 4, where a device parameter
is changed upon having an output vector value crossing a limit.

19.6 ngspice parallel

The following chapter describes an offer to the advanced user and developer community. If you
are interested in evaluating the parallel and synchronized operation of several ngspice instances,
this may be one way to go. However, no ready to use implementation is available. You will
find a toolbox and some hints how to use it. Parallelization and synchronization is your task by
developing a suitable caller! And of course another major input has to come from partitioning
the circuit into suitable, loosely coupled pieces, each with its own netlist, one netlist per ngspice
instance. And you have to define the coupling between the circuit blocks. Both are not provided
by ngspice, but are again your responsibility. Both are under active research, and the toolbox
described below is an offer to join that research.

http://ngspice.sourceforge.net/ngspice-shared-lib/ng_dll_src_delphi.7z
http://ngspice.sourceforge.net/ngspice-shared-lib/ngspice-sh_bin_win32.7z
http://ngspice.sourceforge.net/ngspice-shared-lib/ngspice_cb.7z
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19.6.1 Go parallel!

A simple way to run several invocations of ngspice in parallel for transient simulation is to
define a caller which loads two or more ngspice shared libraries. There is one prerequisite how-
ever to do so: the shared libraries have to have different names. So compile ngspice shared
lib (see 19.1), then copy and rename the library file, e.g. ngspice.dll may become ngspice1.dll,
ngspice2.dll etc. Then dynamically load ngspice1.dll, retrieve its address, initialize it by calling
ngSpice_init() (see 19.3.2.1), then continue initialization by calling ngSpice_init_Sync() (see
19.6.2.1). An integer identification number may be sent during this step to later uniquely iden-
tify each invocation of the shared library, e.g. by having any callback use this identifier. Repeat
the sequence with ngspice2.dll and so on.

Inter-process communication and synchronization is now done by using three callback func-
tions. To understand their interdependency, it might be useful to have a look at the transient
simulation sequence as defined in the ngspice source file dctran.c. The following listing in-
cludes the shared library option (It differs somewhat from standard procedure.) and disregards
XSPICE.

1. initialization.

2. calculation of operating point.

3. next time step: set new breakpoints (VSRC, ISRC, TRA, LTRA).

4. send simulation data to output, callback function SendData* datfcn.

5. check for autostop and other end conditions.

6. check for interrupting simulation (e.g. by bg_halt).

7. breakpoint handling (e.g. enforce breakpoint, set new small cktdelta if directly after the
breakpoint).

8. calling ngspice internal function sharedsync() which calls callback function GetSync-
Data* getsync with location flag loc = 0.

9. save the previous states.

10. start endless loop.

11. save cktdelta to olddelta, set new time point by adding cktdelta to ckttime.

12. new iteration of circuit at new time point, which uses callback functions GetVSRCData*
getvdat and GetISRCData* getidat to retrieve external voltage or current inputs, returns
redostep=0, if converged, redostep=1 if not converged.

13. if not converged, divide cktdelta by 8.

14. check for truncation error with all non-linear devices, if necessary create a new (smaller)
cktdelta to limit the error, optionally change integration order.

15. calling ngspice internal function sharedsync() which calls callback function GetSync-
Data* getsync with location flag loc = 1: as a result either goto 3 (next time step) or to
10 (loop start), depending on ngspice and user data, see next paragraph.
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The code of the synchronization procedure is handled in the ngspice internal function sharedsync()
and its companion user defined callback function GetSyncData* getsync. The actual setup is
as follows:

If no synchronization is asked for (GetSyncData* set to NULL), program control jumps to ’next
time step’ (3) if redostep==0, or subtracts olddelta from ckttime and jumps to ’loop start’ (9) if
redostep <> 0. This is the standard ngspice behavior.

If GetSyncData* has been set to a valid address by ngSpice_Init_Sync(), the callback function
getsync is involved. If redostep <> 0, olddelta is subtracted from ckttime, getsync is called,
either the cktdelta time suggested by ngspice is kept or the user provides his own deltatime,
and the program execution jumps to (9) for redoing the last step with the new deltatime. The
return value of getsync is not used. If redostep == 0, getsync is called. The user may keep
the deltatime suggested by ngspice or define a new value. If the user sets the return value of
getsync to 0, the program execution then jumps to ’next time step’ (3). If the return value of
getsync is 1, olddelta is subtracted from ckttime, and the program execution jumps to (9) for
redoing the last step with the new deltatime. Typically the user provided deltatime should be
smaller than the value suggested by ngspice.

19.6.2 Additional exported functions

The following functions (exported or callback) are designed to support the parallel action of
several ngspice invocations. They may be useful, however, also when only a single library is
loaded into a caller, if you want to use external voltage or current sources or ’play’ with the
advancing simulation time.

19.6.2.1 int ngSpice_Init_Sync(GetVSRCData* , GetISRCData* , GetSyncData* , int*,
void*)

Pointers to callback functions (details see 19.3.3):

GetVSRCData* callback function for retrieving a voltage source value from caller (NULL
allowed)

GetISRCData* callback function for retrieving a current source value from caller (NULL al-
lowed)

GetSyncData* callback function for synchronization (NULL allowed)

More pointers

int* pointer to integer unique to this shared library (defaults to 0)

void* pointer to user-defined data, will not be modified, but handed over back to caller dur-
ing Callback, e.g. address of calling object. If NULL is sent here, userdata info from
ngSpice_Init() will be kept, otherwise userdata will be overridden by new value from
here.
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19.6.2.2 bool ngSpice_SetBkpt(double)

Sets a breakpoint in ngspice, a time point which the simulator is enforced to hit during the
transient simulation. After the breakpoint time has been hit, the next delta time starts with a
small value and is ramped up again. A breakpoint should be set only when the background
thread in ngspice is not running (before the simulation has started, or after the simulation has
been paused by bg_halt). The time sent to ngspice should be larger than the current time (which
is either 0 before start or given by the callback GetSyncData (19.6.3.3). Several breakpoints
may be set.

19.6.3 Additional callback functions

19.6.3.1 typedef int (GetVSRCData)(double*, double, char*, int, void*)

double* return voltage value

double actual time

char* node name

int identification number of calling ngspice shared lib

void* return pointer received from caller

Ask for a VSRC EXTERNAL voltage value. The independent voltage source (see chapt. 4.1)
with EXTERNAL option allows to set a voltage value to the node defined in the netlist and
named here at the time returned by the simulator.

19.6.3.2 typedef int (GetISRCData)(double*, double, char*, int, void*)

double* return current value

double actual time

char* node name

int identification number of calling ngspice shared lib

void* return pointer received from caller

Ask for ISRC EXTERNAL value. The independent current source (see chapt. 4.1) with EX-
TERNAL option allows to set a current value to the node defined by the netlist and named here
at the time returned by the simulator.
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19.6.3.3 typedef int (GetSyncData)(double, double*, double, int, void*)

double actual time (ckt->CKTtime)

double* delta time (ckt->CKTdelta)

double old delta time (olddelta)

int identification number of calling ngspice shared lib

int location of call for synchronization in dctran.c

void* return pointer received from caller

Ask for new delta time depending on synchronization requirements. See 19.6.1 for an explana-
tion.

19.6.4 Parallel ngspice example

A first example is available as a compacted 7z archive. It contains the source code of a control-
ling application, as well as its compiled executable and ngspice.dll (for MS Windows). As the
input circuit an inverter chain has been divided into three parts. Three ngspice shared libraries
are loaded, each simulates one partition of the circuit. Interconnections between the partitions
are provided via a callback function. The simulation time is synchronized among the three
ngspice invocations by another callback function.

http://ngspice.sourceforge.net/ngspice-shared-lib/ngspice_sync_win.7z
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Chapter 20

TCLspice

Spice historically comes as a simulation engine with a Command Line Interface. Spice engine
now can be used with friendly Graphical User Interfaces. Tclspice represent a third approach
to interfacing ngspice simulation functionality. Tclspice is nothing more than a new way of
compiling and using spice source code Spice is no longer considered as a standalone program
but as a library invoked by a TCL interpreter. It either permits direct simulation in a friendly
TCL shell (this is quite analogous to the command line interface of ngspice), or it permits the
elaboration of more complex, more specific, or more user friendly simulation programs, by
writing TCL scripts.

20.1 tclspice framework

The technical difference between the ngspice CLI interface and tclspice is that the CLI interface
is compiled as a standalone program, whereas tclspice is a shared object. Tclspice is designed to
work with tools that expand the capabilities of ngspice: TCL for the scripting and programming
language interface and BLT for data processing and display. This two tools give tclspice all of
its relevance, with the insurance that the functionality is maintained by competent people.

Making tclspice (see 20.6) produces two files: libspice.so and pkgIndex.tcl. libspice.so is the
executable binary that the TCL interpreter calls to handle spice commands. pkgIndex.tcl take
place in the TCL directory tree, providing the spice package1 to the TCL user.

BLT is a TCL package. It is quite well documented. It permits to handle mathematical vector
data structure for calculus and display, in a Tk interpreter like wish.

20.2 tclspice documentation

A detailed documentation on tclspice commands is available on the original tclspice web page.

20.3 spicetoblt

Tclspice opens its doors to TCL and BLT with a single specific command spicetoblt.
1package has to be understood as the TCL package
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http://tclspice.sourceforge.net/docs/tclspice_com.html
http://tclspice.sourceforge.net/
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TCLspice gets its identity in the command spice::vectoblt This command copies data computed
by the simulation engine into a tcl variable. vectoblt is composed of three words: vec, to and
blt. Vec means spice vector data. To is the English preposition, and blt is a useful tcl package
providing a vector data structure. Example:

b l t : : v e c t o r c r e a t e I e x
s p i c e : : v e c t o b l t Vex# b ra nc h I e x

Here an empty blt vector is created. It is then filled with the vector representation of the current
flowing out of source Vex. Vex#branch is native spices syntax. Iex is the name of the BLT
vector.

The reverse operation is handled by native spice commands, such as alter, let and set.

20.4 Running TCLspice

TCLspice consists of a library or a package to include in your tcl console or script:

l o a d / somepath / l i b s p i c e . so
package r e q u i r e s p i c e

Then you can execute any native spice command by preceding it with spice:: For example if
you want to source the testCapa.cir netlist, type the following:

s p i c e : : s o u r c e t e s t C a p a . c i r
s p i c e : : s p i c e t o b l t example . . .

Plotting data is not a matter of spice, but of tcl. Once the data is stored in a blt vector, it can be
plotted. Example:

b l t : : g raph . cimvd − t i t l e "Cim = f ( Vd ) "
pack . cimvd
. cimvd e l e m e n t c r e a t e l i n e 1 −x d a t a Vcmd −y d a t a Cim

With blt::graph a plotting structure is allocated in memory. With pack it is placed into the output
window, and becomes visible. The last command, and not the least, plots the function Cim =
f(Vcmd), where Cim and Vcmd are two BLT vectors.

20.5 examples

20.5.1 Active capacitor measurement

In this crude implementation of a circuit described by Marc KODRNJA, in his PhD thesis that
I found on the Internet. This simulation outputs a graph representing the virtual capacitance
versus the command voltage. The function C = f (V ) is calculated point by point. For each
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control voltage value, the virtual capacitance is calculated with the voltage and intensity across
the output port in a frequency simulation. A control value that should be as close to zero as
possible is calculated to assess simulation success.

20.5.1.1 Invocation:

This script can be invoked by typing wish testbench1.tcl

20.5.1.2 testbench1.tcl

This line loads the simulator capabilities

package r e q u i r e s p i c e

This is a comment (Quite useful if you intend to live with other Human beings)

# T e s t o f v i r t u a l c a p a c i t o r e c i r c u i t
# Vary t h e c o n t r o l v o l t a g e and l o g t h e r e s u l t i n g c a p a c i t a n c e

A good example of the calling of a spice command: precede it with spice::

s p i c e : : s o u r c e " t e s t C a p a . c i r "

This reminds that any regular TCL command is of course possible

s e t n 30 s e t dv 0 . 2
s e t vmax [ exp r $dv / 2 ]
s e t vmin [ exp r −1 * $dv / 2 ]
s e t pas [ exp r $dv / $n ]

BLT vector is the structure used to manipulate data. Instantiate the vectors

b l t : : v e c t o r c r e a t e Ctmp
b l t : : v e c t o r c r e a t e Cim
b l t : : v e c t o r c r e a t e check
b l t : : v e c t o r c r e a t e Vcmd

Data is, in my coding style, plotted into graph objects. Instantiate the graph
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b l t : : g raph . cimvd − t i t l e "Cim = f ( Vd ) "
b l t : : g raph . checkvd − t i t l e "Rim = f ( Vd ) "
b l t : : v e c t o r c r e a t e I e x
b l t : : v e c t o r c r e a t e f r e q
b l t : : g raph . f r e q a n a l − t i t l e " Ana lyse f r e q u e n t i e l l e "
#
# F i r s t s i m u l a t i o n : A s i m p l e AC p l o t
#
s e t v [ exp r { $vmin + $n * $pas / 4} ]
s p i c e : : a l t e r vd = $v
s p i c e : : op
s p i c e : : ac dec 10 100 100k

Retrieve a the intensity of the current across Vex source

s p i c e : : v e c t o b l t {Vex# b ra nc h } I e x

Retrieve the frequency at which the current have been assessed

s p i c e : : v e c t o b l t { f r e q u e n c y } f r e q

Room the graph in the display window

pack . f r e q a n a l

Plot the function Iex =f(V)

. f r e q a n a l e l e m e n t c r e a t e l i n e 1 −x d a t a f r e q −y d a t a I e x
#
# Second s i m u l a t i o n : C a p a c i t a n c e v e r s u s v o l t a g e c o n t r o l
# f o r { s e t i 0} { [ exp r $n − $ i ] } { i n c r i }
# { s e t v [ exp r { $vmin + $ i * $pas } ]
s p i c e : : a l t e r vd = $v
s p i c e : : op s p i c e : : ac dec 10 100 100k

Image capacitance is calculated by spice, instead of TCL there is no objective reason

s p i c e : : l e t Cim = r e a l ( mean ( Vex# b ra n ch / ( 2 * P i * i * f r e q u e n c y *(V(5)−V ( 6 ) ) ) ) )
s p i c e : : v e c t o b l t Cim Ctmp

Build function vector point by point

Cim append $Ctmp ( 0 : end )

Build a control vector to check simulation success
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s p i c e : : l e t e r r = r e a l ( mean ( s q r t ( ( Vex# branch−
(2* P i * i * f r e q u e n c y *Cim*V(5)−V ( 6 ) ) ) ^ 2 ) ) )

s p i c e : : v e c t o b l t e r r Ctmp check
append $Ctmp ( 0 : end )

Build abscissa vector

FALTA ALGO . . . Vcmd append $v }

Plot

pack . cimvd
. cimvd e l e m e n t c r e a t e l i n e 1 −x d a t a Vcmd −y d a t a Cim
pack . checkvd
. checkvd e l e m e n t c r e a t e l i n e 1 −x d a t a Vcmd −y d a t a check

20.5.2 Optimization of a linearization circuit for a Thermistor

This example is both the first and the last optimization program I wrote for an electronic circuit.
It is far from perfect.

The temperature response of a CTN is exponential. It is thus nonlinear. In a battery charger
application floating voltage varies linearly with temperature. A TL431 voltage reference sees
its output voltage controlled by two resistors (r10, r12) and a thermistor (r11). The simulation
is run at a given temperature. The thermistor is modeled in spice by a regular resistor. Its
resistivity is assessed by the TCL script. It is set with a spice::alter command before running
the simulation. This script uses an iterative optimization approach to try to converge to a set
of two resistor values which minimizes the error between the expected floating voltage and the
TL431 output.

20.5.2.1 Invocation:

This script can be executed by the user by simply executing the file in a terminal.

. / t e s t b e n c h 3 . t c l

Two issues are important to point out2:

2For those who are really interested in optimizing circuits: Some parameters are very important for quick and
correct convergence. The optimizer walks step by step to a local minimum of the cost function you define. Starting
from an initial vector YOU provide, it converges step by step. Consider trying another start vector if the result is
not the one you expected.

The optimizer will carry on walking until it reaches a vector which resulting cost is smaller than the target cost
YOU provide it. You will also provide a maximum iteration count in case the target can not be achieved. Balance
your time, specifications, and every other parameters. For a balance between quick and accurate convergence
adjust the "factor" variable, at the beginning of minimumSteepestDescent in the file differentiate.tcl.
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• During optimization loop, graphical display of the current temperature response is not yet
possible and I don’t know why. Each time a simulation is performed, some memory is
allocated for it.

• The simulation result remains in memory until the libspice library is unloaded (typically:
when the tcl script ends) or when a spice::clean command is performed. In this kind of
simulation, not cleaning the memory space will freeze your computer and you’ll have to
restart it. Be aware of that.

20.5.2.2 testbench3.tcl

This calls the shell sh who then runs wish with the file itself.

# ! / b i n / sh
# WishFix \
exec wish " $0 " $ {1+"$@"}
#
#
#

Regular package for simulation

package r e q u i r e s p i c e

Here the important line is source differentiate.tcl which contains optimization library

s o u r c e d i f f e r e n t i a t e . t c l

Generates a temperature vector

p roc t e m p e r a t u r e s _ c a l c { t e m p _ i n f temp_sup p o i n t s } {
s e t t s t e p [ exp r " ( $temp_sup − $ t e m p _ i n f ) / $ p o i n t s " ]
s e t t $ t e m p _ i n f
s e t t e m p e r a t u r e s " "
f o r { s e t i 0 } { $ i < $ p o i n t s } { i n c r i } {
s e t t [ exp r { $ t + $ t s t e p } ]
s e t t e m p e r a t u r e s " $ t e m p e r a t u r e s $ t "
}
r e t u r n $ t e m p e r a t u r e s }

generates thermistor resistivity as a vector, typically run: thermistance_calc res B [ tempera-
tures_calc temp_inf temp_sup points ]
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p roc t h e r m i s t a n c e _ c a l c { r e s B p o i n t s } {
s e t t z e r o 273 .15
s e t t r e f 25
s e t t h e r m i s t a n c e " "
f o r e a c h t $ p o i n t s {
s e t r e s _ t e m p [ exp r " $ r e s * exp ( $B * ( 1 / ( $ t z e r o + $ t ) − 1

/ ( $ t z e r o + $ t r e f ) ) ) " ]
s e t t h e r m i s t a n c e " $ t h e r m i s t a n c e $ re s_ t emp "
}
r e t u r n $ t h e r m i s t a n c e }

generates the expected floating value as a vector, typically run: tref_calc res B [ tempera-
tures_calc temp_inf temp_sup points ]

p roc t r e f _ c a l c { p o i n t s } {
s e t t r e f " "
f o r e a c h t $ p o i n t s {
s e t t r e f " $ t r e f [ exp r " 6 * (2 .275 −0 .005*( $ t − 20) ) − 9" ] "
}
r e t u r n $ t r e f }

In the optimization algorithm, this function computes the effective floating voltage at the given
temperature.

### NOTE:
### As component v a l u e s a r e m o d i f i e d by a s p i c e : : a l t e r

Component v a l u e s can be c o n s i d e r e d as g l o b a l v a r i a b l e .
### R10 and R12 a r e n o t p a s s e d t o i t e r a t i o n f u n c t i o n b e c a u s e i t

i s e x p e c t e d t o be c o r r e c t , i e t o have been m o d i f i e d soon
b e f o r e p roc i t e r a t i o n { t } { s e t t z e r o 273 .15 s p i c e : : a l t e r
r11 = [ t h e r m i s t a n c e _ c a l c 10000 3900 $ t ]

# Tempera tu r e s i m u l a t i o n o f t e n c r a s h e s . Comment i t o u t . . .
# s p i c e : : s e t temp = [ exp r " $ t z e r o + $ t " ]
s p i c e : : op
s p i c e : : v e c t o b l t v r e f _ t e m p t r e f _ t m p
###NOTE:
###As t h e l i b r a r y i s e x e c u t e d once f o r t h e whole s c r i p t

e x e c u t i o n , i t i s i m p o r t a n t t o manage t h e memory
### and r e g u l a r l y d e s t r o y unused d a t a s e t . The d a t a computed

h e r e w i l l n o t be r e u s e d . Clean i t
s p i c e : : d e s t r o y a l l r e t u r n [ t r e f _ t m p r a n g e 0 0 ] }

This is the cost function optimization algorithm will try to minimize. It is a 2-norm (Euclidean
norm) of the error across the temperature range [-25:75]°C.
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p roc c o s t { r10 r12 } {
t r e f _ b l t l e n g t h 0
s p i c e : : a l t e r r10 = $r10
s p i c e : : a l t e r r12 = $r12
f o r e a c h p o i n t [ t e m p e r a t u r e s _ b l t r a n g e 0 [ exp r " [

t e m p e r a t u r e s _ b l t l e n g t h ] − 1" ] ] {
t r e f _ b l t append [ i t e r a t i o n $ p o i n t ]
}
s e t r e s u l t [ b l t : : v e c t o r exp r " 1000 * sum ( ( t r e f _ b l t −

e x p e c t e d _ b l t ) ^2 ) " ]
d i s p _ c u r v e $r10 $r12
r e t u r n $ r e s u l t }

This function displays the expected and effective value of the voltage, as well as the r10 and r12
resistor values

p roc d i s p _ c u r v e { r10 r12 } { . g c o n f i g u r e − t i t l e " V a l e u r s
o p t i m a l e s : R10 = $r10 R12 = $r12 " }

Main loop starts here

#
# O p t i m i z a t i o n
# b l t : : v e c t o r c r e a t e t r e f _ t m p
b l t : : v e c t o r c r e a t e t r e f _ b l t
b l t : : v e c t o r c r e a t e e x p e c t e d _ b l t
b l t : : v e c t o r c r e a t e t e m p e r a t u r e s _ b l t t e m p e r a t u r e s _ b l t
append [ t e m p e r a t u r e s _ c a l c −25 75 30 ] e x p e c t e d _ b l t
append [ t r e f _ c a l c [ t e m p e r a t u r e s _ b l t r a n g e 0 [ exp r " [

t e m p e r a t u r e s _ b l t l e n g t h ] − 1" ] ] ]
b l t : : g raph . g
pack . g −s i d e t o p − f i l l bo th −expand t r u e
. g e l e m e n t c r e a t e r e a l −p i x e l s 4 −x d a t a t e m p e r a t u r e s _ b l t −y d a t a

t r e f _ b l t
. g e l e m e n t c r e a t e e x p e c t e d − f i l l r e d −p i x e l s 0 −d a s h e s d o t −

x d a t a t e m p e r a t u r e s _ b l t −y d a t a e x p e c t e d _ b l t

Source the circuit and optimize it, result is retrieved in r10r12 variable and affected to r10 and
r12 with a regular expression. A bit ugly.

s p i c e : : s o u r c e FB14 . c i r
s e t r 1 0 r 1 2 [ : : math : : o p t i m i z e : : min imumSteepes tDescen t c o s t {

10000 10000 } 0 . 1 50 ]
r eg ex p { ( [ 0 −9 . ] * ) ( [ 0 −9 . ] * ) } $ r 1 0 r 1 2 r 1 0 r 1 2 r10 r12

Outputs optimization result
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#
# R e s u l t s
# s p i c e : : a l t e r r10 = $r10
s p i c e : : a l t e r r12 = $r12
f o r e a c h p o i n t [ t e m p e r a t u r e s _ b l t r a n g e 0 [ exp r " [

t e m p e r a t u r e s _ b l t l e n g t h ] − 1" ] ] {
t r e f _ b l t append [ i t e r a t i o n $ p o i n t ]
}
d i s p _ c u r v e $r10 $r12

20.5.3 Progressive display

This example is quite simple but it is very interesting. It displays a transient simulation result
on the fly. You may now be familiar with most of the lines of this script. It uses the ability of
BLT objects to automatically update. When the vector data is modified, the strip-chart display
is modified accordingly.

20.5.3.1 testbench2.tcl

# ! / b i n / sh
# WishFix \

exec wish −f " $0 " $ {1+"$@"}
###
package r e q u i r e BLT package r e q u i r e s p i c e

this avoids to type blt:: before the blt class commands

namespace i m p o r t b l t : : *
wm t i t l e . " Ve c t o r T e s t s c r i p t "
wm geomet ry . 800 x600 +40+40 pack p r o p a g a t e . f a l s e

A strip chart with labels but without data is created and displayed (packed)
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s t r i p c h a r t . c h a r t
pack . c h a r t −s i d e t o p − f i l l bo th −expand t r u e
. c h a r t a x i s c o n f i g u r e x − t i t l e " Time " s p i c e : : s o u r c e example . c i r
s p i c e : : bg
run a f t e r 1000 v e c t o r
c r e a t e a0 v e c t o r
c r e a t e b0 v e c t o r r y
c r e a t e a1 v e c t o r
c r e a t e b1 v e c t o r
c r e a t e s t i m e
p roc b l t u p d a t e {} {
p u t s [ s p i c e : : s p i c e _ d a t a ]
s p i c e : : s p i c e t o b l t a0 a0
s p i c e : : s p i c e t o b l t b0 b0
s p i c e : : s p i c e t o b l t a1 a1
s p i c e : : s p i c e t o b l t b1 b1
s p i c e : : s p i c e t o b l t t ime s t i m e
a f t e r 100 b l t u p d a t e }
b l t u p d a t e . c h a r t e l e m e n t c r e a t e a0 −c o l o r r e d −x d a t a s t i m e −y d a t a a0
. c h a r t e l e m e n t c r e a t e b0 −c o l o r b l u e −x d a t a s t i m e −y d a t a b0
. c h a r t e l e m e n t c r e a t e a1 −c o l o r ye l l ow −x d a t a s t i m e −y d a t a a1
. c h a r t e l e m e n t c r e a t e b1 −c o l o r b l a c k −x d a t a s t i m e −y d a t a b1

20.6 Compiling

20.6.1 LINUX

Get tcl8.4 from your distribution. You will need the blt plotting package (compatible to the old
tcl 8.4 only) from here. See also the actual blt wiki.

./configure --with-tcl ..
make
sudo make install

20.6.2 MS Windows

Can be done, but is tedious. I will describe my procedure on Windows 7, 64 Bit Home Edition.

20.6.2.1 Downloads

download tcl8.6b2-src.zip from http://www.tcl.tk/software/tcltk/download.html

download tk8.6b2-src.zip

download blt from http://ngspice.sourceforge.net/experimental/blt2.4z.7z

expand all to d:\software

http://sourceforge.net/projects/blt/files/BLT/BLT%202.4z/
http://wiki.tcl.tk/199
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20.6.2.2 Tcl

double click on D:\software\tcl8.6b2\win\tcl.dsw

convert to MS visual Studio 2008 project

select release or debug

create tcl as tcl86t.dll.

20.6.2.3 Tk

edit D:\software\tk8.6b2\win\buildall.vc.bat

line 31 to

call "C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\vcvarsall.bat"

line 53 to

if "%TCLDIR%" == "" set TCLDIR=..\..\tcl8.6b2

open cmd window

cd to

d:\software\tk8.6b2\win>

then

d:\software\tk8.6b2\win> buildall.vc.bat debug

tk will be made as tk86t.dll, in addition wish86t.exe is generated.

20.6.2.4 blt

blt sorce files have been downloaded from the blt web page and modified for compatibility with
TCL8.6. To facilitate making blt24.dll, the modified source code is available as a 7z compressed
file, including a project file for MS Visual Studio 2008.

20.6.2.5 tclspice

ngspice is compiled and linked into a dll called spice.dll which may be loaded by wish86t.exe.
MS Visual Studio 2008 is the compiler applied. A project file may be downloaded as a 7z
compressed file. Expand this file in the ngspice main directory. The links to tcl and tk are
hard-coded, so both have to be installed in the places described above (d:\software\...). spice.dll
may be generated in Debug, Release or ReleaseOMP mode.

20.7 MS Windows 32 Bit binaries

You may download the compiled binaries, including tcl, tk, blt and tclspice, plus the examples,
slightly modified, from http://ngspice.sourceforge.net/experimental/tclspice-25.7z.

ftp://www.sourceforge.net/projects/blt/files/BLT2.4z.tar.gz
http://ngspice.sourceforge.net/experimental/blt2.4z.7z
http://ngspice.sourceforge.net/experimental/blt2.4z.7z
http://ngspice.sourceforge.net/experimental/visualc-tcl.7z
http://ngspice.sourceforge.net/experimental/visualc-tcl.7z
http://ngspice.sourceforge.net/experimental/tclspice-25.7z
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Chapter 21

Example Circuits

This section starts with an ngspice example to walk you through the basic features of ngspice
using its command line user interface. The operation of ngspice will be illustrated through
several examples (chapters 20.1 to 20.7).

The first example uses the simple one-transistor amplifier circuit illustrated in Figure 21.1. This
circuit is constructed entirely with ngspice compatible devices and is used to introduce basic
concepts, including:

• Invoking the simulator:

• Running simulations in different analysis modes

• Printing and plotting analog results

• Examining status, including execution time and memory usage

• Exiting the simulator

The remainder of the section (from chapter 21.2 onwards) lists several circuits, which have been
accompanying any ngspice distribution, and may be regarded as the “classical” SPICE circuits.

21.1 AC coupled transistor amplifier

The circuit shown in Figure 21.1 is a simple one-transistor amplifier. The input signal is ampli-
fied with a gain of approximately -(Rc/Re) = -(3.9K/1K) = -3.9. The circuit description file for
this example is shown below.

373
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Figure 21.1: Transistor Amplifier Simulation Example

Example:

A B e r k e l e y SPICE3 c o m p a t i b l e c i r c u i t
*
* Th i s c i r c u i t c o n t a i n s on ly B e r k e l e y SPICE3 components .
*
* The c i r c u i t i s an AC c o u p l e d t r a n s i s t o r a m p l i f i e r w i th
* a s inewave i n p u t a t node " 1 " , a g a i n o f a p p r o x i m a t e l y −3.9 ,
* and o u t p u t on node " c o l l " .
*
. t r a n 1e−5 2e−3
*
vcc vcc 0 1 2 . 0
v i n 1 0 0 . 0 ac 1 . 0 s i n (0 1 1k )
c c o u p l e 1 base 10uF
r b i a s 1 vcc base 100k
r b i a s 2 base 0 24k
q1 c o l l ba se emi t g e n e r i c
r c o l l e c t o r vcc c o l l 3 . 9 k
r e m i t t e r emi t 0 1k
*
. model g e n e r i c npn
*
. end

To simulate this circuit, move into a directory under your user account and copy the file xspice_c1.cir
from directory /examples/xspice/. This file stems from the original XSPICE introduction,
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therefore its name, but you do not need installing the XSPICE option to run it.

$ cp /examples/xspice/xspice_c1.cir xspice_c1.cir

Now invoke the simulator on this circuit as follows:

$ ngspice xspice_c1.cir

After a few moments, you should see the ngspice prompt:

ngspice 1 ->

At this point, ngspice has read-in the circuit description and checked it for errors. If any errors
had been encountered, messages describing them would have been output to your terminal.
Since no messages were printed for this circuit, the syntax of the circuit description was correct.

To see the circuit description read by the simulator you can issue the following command:

ngspice 1 -> listing

The simulator shows you the circuit description currently in memory:

a berkeley spice3 compatible circuit
1 : a berkeley spice3 compatible circuit
2 : .global gnd
10 : .tran 1e-5 2e-3
12 : vcc vcc 0 12.0
13 : vin 1 0 0.0 ac 1.0 sin(0 1 1k)
14 : ccouple 1 base 10uf
15 : rbias1 vcc base 100k
16 : rbias2 base 0 24k
17 : q1 coll base emit generic
18 : rcollector vcc coll 3.9k
19 : remitter emit 0 1k
21 : .model generic npn
24 : .end

The title of this circuit is “A Berkeley SPICE3 compatible circuit”. The circuit description
contains a transient analysis control command .TRAN 1E-5 2E-3 requesting a total simulated
time of 2ms with a maximum time-step of 10us. The remainder of the lines in the circuit
description describe the circuit of Figure 21.1.

Now, execute the simulation by entering the “run” command:

ngspice 1 -> run
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The simulator will run the simulation and when execution is completed, will return with the
ngspice prompt. When the prompt returns, issue the rusage command again to see how much
time and memory has been used now.

To examine the results of this transient analysis, we can use the “plot” command. First we will
plot the nodes labeled “1” and “base”.

ngspice 2 -> plot v(1) base

The simulator responds by displaying an X Window System plot similar to that shown in Figure
21.2.

Figure 21.2: node 1 and node ’base’ versus time

Notice that we have named one of the nodes in the circuit description with a number (“1”),
while the others are words (“base”). This was done to illustrate ngspice’s special requirements
for plotting nodes labeled with numbers. Numeric labels are allowed in ngspice for backwards
compatibility with SPICE2. However, they require special treatment in some commands such
as “plot”. The “plot” command is designed to allow expressions in its argument list in addition
to names of results data to be plotted. For example, the expression plot (base - 1) would
plot the result of subtracting 1 from the value of node “base”.

If we had desired to plot the difference between the voltage at node “base” and node “1”, we
would need to enclose the node name “1” in the construction v( ) producing a command such
as plot (base - v(1)).

Now, issue the following command to examine the voltages on two of the internal nodes of the
transistor amplifier circuit:
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ngspice 3 -> plot vcc coll emit

The plot shown in Figure 21.3 should appear. Notice in the circuit description that the power
supply voltage source and the node it is connected to both have the name "vcc". The plot
command above has plotted the node voltage "vcc". However, it is also possible to plot branch
currents through voltage sources in a circuit. ngspice always adds the special suffix "#branch"
to voltage source names. Hence, to plot the current into the voltage source named "vcc", we
would use a command such as plot vcc#branch.

Figure 21.3: VCC, Collector and Emitter Voltages

Now let’s run a simple DC simulation of this circuit and examine the bias voltages with the
"print" command. One way to do this is to quit the simulator using the "quit" command, edit
the input file to change the ".tran" line to ".op" (for ’operating point analysis’), re-invoke the
simulator, and then issue the "run" command. However, ngspice allows analysis mode changes
directly from the ngspice prompt. All that is required is to enter the control line, e.g. op (without
the leading "."). ngspice will interpret the information on the line and start the new analysis run
immediately, without the need to enter a new "run" command.

To run the DC simulation of the transistor amplifier, issue the following command:

ngspice 4 -> op

After a moment the ngspice prompt returns. Now issue the "print" command to examine the
emitter, base, and collector DC bias voltages.

ngspice 5 -> print emit base coll

ngspice responds with:

emit = 1.293993e+00 base = 2.074610e+00 coll = 7.003393e+00
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To run an AC analysis, enter the following command:

ngspice 6 -> ac dec 10 0.01 100

This command runs a small-signal swept AC analysis of the circuit to compute the magnitude
and phase responses. In this example, the sweep is logarithmic with "decade" scaling, 10 points
per decade, and lower and upper frequencies of 0.01 Hz and 100 Hz. Since the command
sweeps through a range of frequencies, the results are vectors of values and are examined with
the plot command. Issue to the following command to plot the response curve at node "coll":

ngspice 7 -> plot coll

This plot shows the AC gain from input to the collector. (Note that our input source in the circuit
description "vin" contained parameters of the form "AC 1.0" designating that a unit-amplitude
AC signal was applied at this point.) For plotting data from an AC analysis, ngspice chooses
automatically a logarithmic scaling for the frequency (x) axis.

To produce a more traditional "Bode" gain phase plot (again with automatic logarithmic scaling
on the frequency axis), we use the expression capability of the "plot" command and the built-in
Nutmeg functions db( ) and ph( ):

ngspice 8 -> plot db(coll) ph(coll)

The last analysis supported by ngspice is a swept DC analysis. To perform this analysis, issue
the following command:

ngspice 9 -> dc vcc 0 15 0.1

This command sweeps the supply voltage "vcc" from 0 to 15 volts in 0.1 volt increments. To
plot the results, issue the command:

ngspice 10 -> plot emit base coll

Finally, to exit the simulator, use the "quit" command, and you will be returned to the operating
system prompt.

ngspice 11 -> quit

So long.
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21.2 Differential Pair

The following deck determines the dc operating point of a simple differential pair. In addition,
the ac small-signal response is computed over the frequency range 1Hz to 100MEGHz.

Example:

SIMPLE DIFFERENTIAL PAIR
VCC 7 0 12
VEE 8 0 −12
VIN 1 0 AC 1
RS1 1 2 1K
RS2 6 0 1K
Q1 3 2 4 MOD1
Q2 5 6 4 MOD1
RC1 7 3 10K
RC2 7 5 10K
RE 4 8 10K
.MODEL MOD1 NPN BF=50 VAF=50 IS =1 .E−12 RB=100 CJC =.5 PF TF =.6NS
. TF V( 5 ) VIN
.AC DEC 10 1 100MEG
.END

21.3 MOSFET Characterization

The following deck computes the output characteristics of a MOSFET device over the range
0-10V for VDS and 0-5V for VGS.

Example:

MOS OUTPUT CHARACTERISTICS
. OPTIONS NODE NOPAGE
VDS 3 0
VGS 2 0
M1 1 2 0 0 MOD1 L=4U W=6U AD=10P AS=10P
* VIDS MEASURES ID , WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE
VIDS 3 1
.MODEL MOD1 NMOS VTO=−2 NSUB=1.0 E15 UO=550
.DC VDS 0 10 . 5 VGS 0 5 1
.END

21.4 RTL Inverter

The following deck determines the dc transfer curve and the transient pulse response of a simple
RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and
a pulse width of 30ns. The transient interval is 0 to 100ns, with printing to be done every
nanosecond.
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Example:

SIMPLE RTL INVERTER
VCC 4 0 5
VIN 1 0 PULSE 0 5 2NS 2NS 2NS 30NS
RB 1 2 10K
Q1 3 2 0 Q1
RC 3 4 1K
.MODEL Q1 NPN BF 20 RB 100 TF . 1NS CJC 2PF
.DC VIN 0 5 0 . 1
.TRAN 1NS 100NS
.END

21.5 Four-Bit Binary Adder (Bipolar)

The following deck simulates a four-bit binary adder, using several subcircuits to describe vari-
ous pieces of the overall circuit.

Example:

ADDER − 4 BIT ALL−NAND−GATE BINARY ADDER
*** SUBCIRCUIT DEFINITIONS
. SUBCKT NAND 1 2 3 4
* NODES: INPUT ( 2 ) , OUTPUT, VCC
Q1 9 5 1 QMOD
D1CLAMP 0 1 DMOD
Q2 9 5 2 QMOD
D2CLAMP 0 2 DMOD
RB 4 5 4K
R1 4 6 1 . 6K
Q3 6 9 8 QMOD
R2 8 0 1K
RC 4 7 130
Q4 7 6 10 QMOD
DVBEDROP 10 3 DMOD
Q5 3 8 0 QMOD
. ENDS NAND
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Continue 4 Bit adder :

. SUBCKT ONEBIT 1 2 3 4 5 6
* NODES: INPUT ( 2 ) , CARRY−IN , OUTPUT, CARRY−OUT, VCC
X1 1 2 7 6 NAND
X2 1 7 8 6 NAND
X3 2 7 9 6 NAND
X4 8 9 10 6 NAND
X5 3 10 11 6 NAND
X6 3 11 12 6 NAND
X7 10 11 13 6 NAND
X8 12 13 4 6 NAND
X9 11 7 5 6 NAND
. ENDS ONEBIT

. SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9
* NODES: INPUT − BIT0 ( 2 ) / BIT1 ( 2 ) , OUTPUT − BIT0 / BIT1 ,
* CARRY−IN , CARRY−OUT, VCC
X1 1 2 7 5 10 9 ONEBIT
X2 3 4 10 6 8 9 ONEBIT
. ENDS TWOBIT

. SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* NODES: INPUT − BIT0 ( 2 ) / BIT1 ( 2 ) / BIT2 ( 2 ) / BIT3 ( 2 ) ,
* OUTPUT − BIT0 / BIT1 / BIT2 / BIT3 , CARRY−IN , CARRY−OUT, VCC
X1 1 2 3 4 9 10 13 16 15 TWOBIT
X2 5 6 7 8 11 12 16 14 15 TWOBIT
. ENDS FOURBIT

*** DEFINE NOMINAL CIRCUIT
.MODEL DMOD D
.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF )
VCC 99 0 DC 5V
VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)
VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)
VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)
VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)
VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)
VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)
VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)
VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)
X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT
RBIT0 9 0 1K
RBIT1 10 0 1K
RBIT2 11 0 1K
RBIT3 12 0 1K
RCOUT 13 0 1K

*** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)
.TRAN 1NS 6400NS
.END
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21.6 Four-Bit Binary Adder (MOS)

The following deck simulates a four-bit binary adder, using several subcircuits to describe vari-
ous pieces of the overall circuit.

Example:

ADDER − 4 BIT ALL−NAND−GATE BINARY ADDER
*** SUBCIRCUIT DEFINITIONS
. SUBCKT NAND i n 1 i n 2 o u t VDD
* NODES: INPUT ( 2 ) , OUTPUT, VCC
M1 o u t i n 2 Vdd Vdd p1 W=7.5 u L=0.35 u pd =13 .5 u ad =22 .5 p ps =13 .5 u as =22 .5 p
M2 n e t . 1 i n 2 0 0 n1 W=3u L=0.35 u pd=9u ad =9p
ps =9u as =9p
M3 o u t i n 1 Vdd Vdd p1 W=7.5 u L=0.35 u pd =13 .5 u ad =22 .5 p ps =13 .5 u as =22 .5 p
M4 o u t i n 1 n e t . 1 0 n1 W=3u L=0.35 u pd=9u ad =9p
ps =9u as =9p
. ENDS NAND
. SUBCKT ONEBIT 1 2 3 4 5 6 AND
X2 1 7 8 6 NAND
X3 2 7 9 6 NAND
X4 8 9 10 6 NAND
X5 3 10 11 6 NAND
X6 3 11 12 6 NAND
X7 10 11 13 6 NAND
X8 12 13 4 6 NAND
X9 11 7 5 6 NAND
. ENDS ONEBIT
. SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9
* NODES: INPUT − BIT0 ( 2 ) / BIT1 ( 2 ) , OUTPUT − BIT0 / BIT1 ,
* CARRY−IN , CARRY−OUT, VCC
X1 1 2 7 5 10 9 ONEBIT
X2 3 4 10 6 8 9 ONEBIT
. ENDS TWOBIT
. SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
*NODES: INPUT − BIT0 ( 2 ) / BIT1 ( 2 ) / BIT2 ( 2 ) / BIT3 ( 2 ) ,
* OUTPUT − BIT0 / BIT1 / BIT2 / BIT3 , CARRY−IN ,
* CARRY−OUT, VCC
X1 1 2 3 4 9 10 13 16 15 TWOBIT
X2 5 6 7 8 11 12 16 14 15 TWOBIT
. ENDS FOURBIT
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Continue 4 Bit adder MOS:

*** POWER
VCC 99 0 DC 3 . 3V
*** INPUTS
VIN1A 1 0 DC 0 PULSE(0 3 0 5NS 5NS 20NS 50NS)
VIN1B 2 0 DC 0 PULSE(0 3 0 5NS 5NS 30NS 100NS)
VIN2A 3 0 DC 0 PULSE(0 3 0 5NS 5NS 50NS 200NS)
VIN2B 4 0 DC 0 PULSE(0 3 0 5NS 5NS 90NS 400NS)
VIN3A 5 0 DC 0 PULSE(0 3 0 5NS 5NS 170NS 800NS)
VIN3B 6 0 DC 0 PULSE(0 3 0 5NS 5NS 330NS 1600NS)
VIN4A 7 0 DC 0 PULSE(0 3 0 5NS 5NS 650NS 3200NS)
VIN4B 8 0 DC 0 PULSE(0 3 0 5NS 5NS 1290NS 6400NS)
*** DEFINE NOMINAL CIRCUIT
X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT

. o p t i o n a c c t

. s ave V( 1 ) V( 2 ) V( 3 ) V( 4 ) V( 5 ) V( 6 ) V( 7 ) V( 8 ) ; INPUTS

. save V( 9 ) V( 1 0 ) V( 1 1 ) V( 1 2 ) V( 1 3 ) ; OUTPUTS

.TRAN 1NS 6400NS

* use BSIM3 model wi th d e f a u l t p a r a m e t e r s
. model n1 nmos l e v e l =49 v e r s i o n = 3 . 3 . 0
. model p1 pmos l e v e l =49 v e r s i o n = 3 . 3 . 0

.END

21.7 Transmission-Line Inverter

The following deck simulates a transmission-line inverter. Two transmission-line elements are
required since two propagation modes are excited. In the case of a coaxial line, the first line
(T1) models the inner conductor with respect to the shield, and the second line (T2) models the
shield with respect to the outside world.

Example:

TRANSMISSION−LINE INVERTER
V1 1 0 PULSE(0 1 0 0 . 1N)
R1 1 2 50
X1 2 0 0 4 TLINE
R2 4 0 50
. SUBCKT TLINE 1 2 3 4
T1 1 2 3 4 Z0=50 TD=1.5NS
T2 2 0 4 0 Z0=100 TD=1NS
. ENDS TLINE
.TRAN 0 . 1NS 20NS
.END
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Chapter 22

Statistical circuit analysis

22.1 Introduction

Real circuits do not operate in a world with fixed values of device parameters, power supplies
and environmental data. Even if a ngspice output offers 5 digits or more of precision, this
should not mislead you thinking that your circuits will behave exactly the same. All physical
parameters influencing a circuit (e.g. MOS Source/drain resistance, threshold voltage, transcon-
ductance) are distributed parameters, often following a Gaussian distribution with a mean value
µand a standard deviation σ .

To obtain circuits operating reliably under varying parameters, it might be necessary to simulate
them taking certain parameter spreads into account. ngspice offers several methods supporting
this task. A powerful random number generator is working in the background. Its seed value
is derived from the process id upon start-up of ngspice. If you need reproducible random num-
bers, you may start ngspice setting the command set rndseed=<int value> into spinit or
.spiceinit. The following three chapters offer a short introduction to the statistical methods
available in ngspice. The diversity of approaches stems from historical reasons, and from some
efforts to make ngspice compatible to other simulators.

22.2 Using random param(eters)

The ngspice frontend (with its ’numparam’ parser) contains the .param (see chapt. 2.8.1) and
.func (see chapt. 2.9) commands. Among the built-in functions supported (see 2.8.5) you will
find the following statistical functions:
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Built-in function Notes
gauss(nom, rvar, sigma) nominal value plus variation drawn from Gaussian

distribution with mean 0 and standard deviation rvar
(relative to nominal), divided by sigma

agauss(nom, avar, sigma) nominal value plus variation drawn from Gaussian
distribution with mean 0 and standard deviation avar

(absolute), divided by sigma
unif(nom, rvar) nominal value plus relative variation (to nominal)

uniformly distributed between +/-rvar
aunif(nom, avar) nominal value plus absolute variation uniformly distributed

between +/-avar
limit(nom, avar) nominal value +/-avar, depending on random number in

[-1, 1[ being > 0 or < 0

The frontend parser evaluates all .param or .func statements upon start-up of ngspice, before
the circuit is evaluated. The parameters aga, aga2, lim obtain their numerical values once. If the
random function appears in a device card (e.g. v11 11 0 ’agauss(1,2,3)’), a new random
number is generated.

Random number example using parameters:

* random number tests
.param aga = agauss (1,2,3)
.param aga2=’2*aga ’
.param lim=limit (0 ,1.2)
.func rgauss(a,b,c) ’5*agauss(a,b,c)’
* always same value as defined above
v1 1 0 ’lim ’
v2 2 0 ’lim ’
* may be a different value
v3 3 0 ’limit (0,1.2)’
* always new random values
v11 11 0 ’agauss (1,2,3)’
v12 12 0 ’agauss (1,2,3)’
v13 13 0 ’agauss (1,2,3)’
* same value as defined above
v14 14 0 ’aga ’
v15 15 0 ’aga ’
v16 16 0 ’aga2 ’
* using .func , new random values
v17 17 0 ’rgauss (0,2,3)’
v18 18 0 ’rgauss (0,2,3)’
.op
.control
run
print v(1) v(2) v(3) v(11) v(12) v(13)
print v(14) v(15) v(16) v(17) v(18)
.endc
.end
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So v1, v2, and v3 will get the same value, whereas v4 might differ. v11, v12, and v13 will get
different values, v14, v15, and v16 will obtain the values set above in the .param statements.
.func will start its replacement algorithm, rgauss(a,b,c) will be replaced everywhere by
5*agauss(a,b,c).

Thus device and model parameters may obtain statistically distributed starting values. You
simply set a model parameter not to a fixed numerical value, but insert a ’parameter’ instead,
which may consist of a token defined in a .param card, by calling .func or by using a built-
in function, including the statistical functions described above. The parameter values will be
evaluated once immediately after reading the input file.

22.3 Behavioral sources (B, E, G, R, L, C) with random con-
trol

All sources listed in the section header may contain parameters, which will be evaluated before
simulation starts, as described in the previous section (22.2). In addition the nonlinear voltage
or current sources (B-source, 5) as well as their derivatives E and G, but also the behavioral R,
L, and C may be controlled during simulation by a random independent voltage source V with
TRRANDOM option (chapt. 4.1.8).

An example circuit, a Wien bridge oscillator from input file /examples/Monte_Carlo/OpWien.sp
is distributed with ngspice or available at Git. The two frequency determining pairs of R and
C are varied statistically using four independent Gaussian voltage sources as the controlling
units. An excerpt of this command sequence is shown below. The total simulation time ttime
is divided into 100 equally spaced blocks. Each block will get a new set of control voltages,
e.g. VR2, which is Gaussian distributed, mean 0 and absolute deviation 1. The resistor value
is calculated with ±10% spread, the factor 0.033 will set this 10% to be a deviation of 1 sigma
from nominal value.

Examples for control of a behavioral resistor:

* random r e s i s t o r
. param r e s = 10k
. param t t i m e =12000m
. param v a r i a =100
. param t t i m e 1 0 = ’ t t i m e / v a r i a ’
* random c o n t r o l v o l t a g e ( G a u s s i a n d i s t r i b u t i o n )
VR2 r2 0 dc 0 t r r a n d o m (2 ’ t t i m e 1 0 ’ 0 1 )
* b e h a v i o r a l r e s i s t o r
R2 4 6 R = ’ r e s + 0 .033 * r e s *V( r2 ) ’

So within a single simulation run you will obtain 100 different frequency values issued by the
Wien bridge oscillator. The voltage sequence VR2 is shown below.
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22.4 ngspice scripting language

The ngspice scripting language is described in detail in chapter 17.8. All commands listed in
chapter 17.5 are available, as well as the built-in functions decried in chapter 17.2, the control
structures listed in chapter 17.6, and the predefined variables from chapt. 17.7. Variables and
functions are typically evaluated after a simulation run. You may created loops with several
simulation runs and change device and model parameters with the alter (17.5.3) or altermod
(17.5.4) commands, as shown in the next section 22.5. You may even interrupt a simulation run
by proper usage of the stop (17.5.72) and resume (17.5.51) commands. After stop you may
change device or model parameters and then go on with resume, continuing the simulation with
the new parameter values.

The statistical functions provided for scripting are listed in the following table:
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Name Function
rnd(vector) A vector with each component a random integer between 0

and the absolute value of the input vector’s corresponding
integer element value.

sgauss(vector) Returns a vector of random numbers drawn from a
Gaussian distribution (real value, mean = 0 , standard

deviation = 1). The length of the vector returned is
determined by the input vector. The contents of the input
vector will not be used. A call to sgauss(0) will return a

single value of a random number as a vector of length 1..
sunif(vector) Returns a vector of random real numbers uniformly

distributed in the interval [-1 .. 1[. The length of the vector
returned is determined by the input vector. The contents of

the input vector will not be used. A call to sunif(0) will
return a single value of a random number as a vector of

length 1.
poisson(vector) Returns a vector with its elements being integers drawn

from a Poisson distribution. The elements of the input
vector (real numbers) are the expected numbers l.

Complex vectors are allowed, real and imaginary values
are treated separately.

exponential(vector) Returns a vector with its elements (real numbers) drawn
from an exponential distribution. The elements of the input

vector are the respective mean values (real numbers).
Complex vectors are allowed, real and imaginary values

are treated separately.

22.5 Monte-Carlo Simulation

The ngspice scripting language may be used to run Monte-Carlo simulations with statistically
varying device or model parameters. Calls to the functions sgauss(0) or sunif(0) (see 17.2) will
return Gaussian or uniform distributed random numbers (real numbers), stored in a vector. You
may define (see 17.5.14) your own function using sgauss or sunif, e.g. to change the mean or
range. In a loop (see 17.6) then you may call the alter (17.5.3) or altermod (17.5.4) statements
with random parameters followed by an analysis like op, dc, ac, tran or other.

22.5.1 Example 1

The first examples is a LC band pass filter, where L and C device parameters will be changed 100
times. Each change is followed by an ac analysis. All graphs of output voltage versus frequency
are plotted. The file is available in the distribution as /examples/Monte_Carlo/MonteCarlo.sp
as well as from the CVS repository.

http://ngspice.cvs.sourceforge.net/viewvc/ngspice/ngspice/ng-spice-rework/examples/Monte_Carlo/MonteCarlo.sp?view=log


390 CHAPTER 22. STATISTICAL CIRCUIT ANALYSIS

Monte-Carlo example 1

Per fo rm Monte C a r l o s i m u l a t i o n i n n g s p i c e
V1 N001 0 AC 1 DC 0
R1 N002 N001 141
*
C1 OUT 0 1e−09
L1 OUT 0 10e−06
C2 N002 0 1e−09
L2 N002 0 10e−06
L3 N003 N002 40e−06
C3 OUT N003 250 e−12
*
R2 0 OUT 141
*
. c o n t r o l

l e t mc_runs = 100
l e t run = 1
s e t c u r p l o t = new $ c r e a t e a new p l o t
s e t s c r a t c h = $ c u r p l o t $ s t o r e i t s name t o ’ s c r a t c h ’

*
d e f i n e u n i f ( nom , v a r ) ( nom + nom* v a r * s u n i f ( 0 ) )
d e f i n e a u n i f ( nom , a v a r ) ( nom + a v a r * s u n i f ( 0 ) )
d e f i n e g a u s s ( nom , var , s i g ) ( nom + nom* v a r / s i g * s g a u s s ( 0 ) )
d e f i n e a g a u s s ( nom , avar , s i g ) ( nom + a v a r / s i g * s g a u s s ( 0 ) )

*
dowhi l e run <= mc_runs

* a l t e r c1 = u n i f (1 e−09 , 0 . 1 )
* a l t e r l 1 = a u n i f (10 e−06 , 2e−06)
* a l t e r c2 = a u n i f (1 e−09 , 100 e−12)
* a l t e r l 2 = u n i f (10 e−06 , 0 . 2 )
* a l t e r l 3 = a u n i f (40 e−06 , 8e−06)
* a l t e r c3 = u n i f (250 e−12 , 0 . 1 5 )

a l t e r c1 = g a u s s (1 e−09 , 0 . 1 , 3 )
a l t e r l 1 = a g a u s s (10 e−06 , 2e−06 , 3 )
a l t e r c2 = a g a u s s (1 e−09 , 100 e−12 , 3 )
a l t e r l 2 = g a u s s (10 e−06 , 0 . 2 , 3 )
a l t e r l 3 = a g a u s s (40 e−06 , 8e−06 , 3 )
a l t e r c3 = g a u s s (250 e−12 , 0 . 1 5 , 3 )
ac o c t 100 250K 10Meg
s e t run =" $&run " $ c r e a t e a v a r i a b l e from t h e v e c t o r
s e t d t = $ c u r p l o t $ s t o r e t h e c u r r e n t p l o t t o d t
s e t p l o t $ s c r a t c h $ make ’ s c r a t c h ’ t h e a c t i v e p l o t

* s t o r e t h e o u t p u t v e c t o r t o p l o t ’ s c r a t c h ’
l e t vou t { $run }={ $ d t } . v ( o u t )
s e t p l o t $ d t $ go back t o t h e p r e v i o u s p l o t
l e t run = run + 1

end
p l o t db ( { $ s c r a t c h } . a l l )

. endc

. end
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22.5.2 Example 2

A more sophisticated input file for Monte Carlo simulation is distributed with the file /exam-
ples/Monte_Carlo/MC_ring.sp (or git repository). Due to its length it is not reproduced here,
but some comments on its enhancements over example 1 (22.5.1) are presented in the following.

A 25-stage ring oscillator is the circuit used with a transient simulation. It comprises of CMOS
inverters, modeled with BSIM3. Several model parameters (vth, u0, tox, L, and W) shall be
varied statistically between each simulation run. The frequency of oscillation will be measured
by a fft and stored. Finally a histogram of all measured frequencies will be plotted.

The function calls to sunif(0) and sgauss(0) return uniformly or Gaussian distributed ran-
dom numbers. A function unif, defined by the line

define unif(nom, var) (nom + (nom*var) * sunif(0))

will return a value with mean nom and deviation var relative to nom.

The line

set n1vth0=@n1[vth0]

will store the threshold voltage vth0, given by the model parameter set, into a variable n1vth0,
ready to be used by unif, aunif, gauss, or agauss function calls.

In the simulation loop the altermod command changes the model parameters before a call to
tran. After the transient simulation the resulting vector is linearized, a fft is calculated, and the
maximum of the fft signal is measured by the meas command and stored in a vector maxffts.
Finally the contents of the vector maxffts is plotted in a histogram.

For more details, please have a look at the strongly commented input file MC_ring.sp.

22.5.3 Example 3

The next example is contained in the files MC_2_control.sp and MC_2_circ.sp from folder /ex-
amples/Monte_Carlo/. MC_2_control.sp is a ngspice script (see 17.8). It starts a loop by setting
the random number generator seed value to the value of the loop counter, sources the circuit file
MC_2_circ.sp, runs the simulation, stores a raw file, makes an fft, saves the oscillator frequency
thus measured, deletes all outputs, increases the loop counter and restarts the loop. The netlist
file MC_2_circ.sp contains the circuit, which is the same ring oscillator as of example 2. How-
ever, now the MOS model parameter set, which is included with this netlist file, inherits some
AGAUSS functions (see 2.8.5) to vary threshold voltage, mobility and gate oxide thickness of
the NMOS and PMOS transistors. This is an approach similar to what commercial foundries
deliver within their device libraries. So this example may be your source for running Monte
Carlo with commercial libs. Start example 3 by calling

ngspice -o MC_2_control.log MC_2_control.sp

22.6 Data evaluation with Gnuplot

Run the example file /examples/Monte_Carlo/OpWien.sp, described in chapt. 22.3. Generate a
plot with Gnuplot by the ngspice command

http://ngspice.git.sourceforge.net/git/gitweb.cgi?p=ngspice/ngspice;a=blob;f=examples/Monte_Carlo/MC_ring.sp;h=58e5c141f5abcb6aa1e22cfcc0d22acabae56170;hb=HEAD
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gnuplot pl4mag v4mag xlimit 500 1500

Open and run the command file in the Gnuplot command line window by

load ’pl-v4mag.p’

A Gaussian curve will be fitted to the simulation data. The mean oscillator frequency and its
deviation are printed in the curve fitting log in the Gnuplot window.

Gnuplot script for data evaluation:

# This file: pl-v4mag.p
# ngspice file OpWien.sp
# ngspice command:
# gnuplot pl4mag v4mag xlimit 500 1500
# a gnuplot manual:
# http ://www.duke.edu/~ hpgavin/gnuplot.html

# Gauss function to be fitted
f1(x)=(c1/(a1*sqrt (2*3.14159))* exp(-((x-b1 )**2)/(2* a1 **2)))
# Gauss function to plot start graph
f2(x)=(c2/(a2*sqrt (2*3.14159))* exp(-((x-b2 )**2)/(2* a2 **2)))
# start values
a1=50 ; b1=900 ; c1=50
# keep start values in a2, b2, c2
a2=a1 ; b2=b1 ; c2=c1
# curve fitting
fit f1(x) ’pl4mag.data ’ using 1:2 via a1, b1, c1
# plot original and fitted curves with new a1 , b1 , c1
plot "pl4mag.data" using 1:2 with lines , f1(x), f2(x)
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pl4mag.data is the simulation data, f2(x) the starting curve, f1(x) the fitted Gaussian distribution.

This is just a simple example. You might explore the powerful built-in functions of Gnuplot to
do a much more sophisticated statistical data analysis.
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Chapter 23

Circuit optimization with ngspice

23.1 Optimization of a circuit

Your circuit design (analog, maybe mixed-signal) has already the best circuit topology. There
might be still some room for parameter selection, e.g. the geometries of transistors or values of
passive elements, to best fit the specific purpose. This is, what (automatic) circuit optimization
will deliver. In addition you may fine-tune, optimize and verify the circuit over voltage, process
or temperature corners. So circuit optimization is a valuable tool in the hands of an experienced
designer. It will relieve you from the routine task of ’endless’ repetitions of re-simulating your
design.

You have to choose circuit variables as parameters to be varied during optimization (e.g. device
size, component values, bias inputs etc.). Then you may pose performance constraints onto
you circuits (e.g. Vnode < 1.2V, gain > 50 etc.). Optimization objectives are the variables to be
minimized or maximized. The n objectives and m constraints are assembled into a cost function.

The optimization flow is now the following: The circuit is loaded. Several (perhaps only one)
simulations are started with a suitable starter set of variables. Measurements are done on the
simulator output to check for the performance constraints and optimization objectives. These
data are fed into the optimizer to evaluate the cost function. A sophisticated algorithm now
determines a new set of circuit variables for the next simulator run(s). Stop conditions have to
be defined by the user to tell the simulator when to finish (e.g. fall below a cost function value,
parameter changes fall below a certain threshold, number of iterations exceeded).

The optimizer algorithms, its parameters and the starting point influence the convergence be-
havior. The algorithms have to provide measures to reaching the global optimum, not to stick
to a local one, and thus are tantamount for the quality of the optimizer.

ngspice does not have an integral optimization processor. Thus this chapter will rely on work
done by third parties to introduce ngspice optimization capability.ngspice provides the simula-
tion engine, a script or program controls the simulator and provides the optimizer functionality.

Four optimizers are presented here, using ngspice scripting language, using tclspice, using a
Python script, and using ASCO, a c-coded optimization program.

395
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23.2 ngspice optimizer using ngspice scripts

Friedrich Schmidt (see his web site) has intensively used circuit optimization during his devel-
opment of Nonlinear loadflow computation with Spice based simulators. He has provided an
optimizer using the internal ngspice scripting language (see chapt. 17.8). His original scripts
are found here. A slightly modified and concentrated set of his scripts is available from the
ngspice optimizer directory.

The simple example given in the scripts is o.k. with current ngspice. Real circuits have still to
be tested.

23.3 ngspice optimizer using tclspice

ngspice offers another scripting capability, namely the tcl/tk based tclspice option (see chapt.
20). An optimization procedure may be written using a tcl script. An example is provided in
chapter 20.5.2.

23.4 ngspice optimizer using a Python script

Werner Hoch has developed a ngspice optimization procedure based on the ’differential evolu-
tion’ algorithm [21]. On his web page he provides a Python script containing the control flow
and algorithms.

23.5 ngspice optimizer using ASCO

The ASCO optimizer, developed by Joao Ramos, also applies the ’differential evolution’ al-
gorithm [21]. An enhanced version 0.4.7.1, adding ngspice as a simulation engine, may be
downloaded here (7z archive format). Included are executable files (asco, asco-mpi, ngspice-c
for MS Windows). The source code should also compile and function under LINUX (not yet
tested).

ASCO is a standalone executable, which communicates with ngspice via ngspice input and out-
put files. Several optimization examples, originally provided by J. Ramos for other simulators,
are prepared for use with ngspice. Parallel processing on a multi-core computer has been tested
using MPI (MPICH2) under MS Windows. A processor network will be supported as well. A
MS Windows console application ngspice_c.exe is included in the archive. Several stand alone
tools are provided, but not tested yet.

Setting up an optimization project with ASCO requires advanced know-how of using ngspice.
There are several sources of information. First of all the examples provided with the distribu-
tion give hints how to start with ASCO. The original ASCO manual is provided as well, or is
available here. It elaborates on the examples, using a commercial simulator, and provides a
detailed description how to set up ASCO. Installation of ASCO and MPI (under Windows) is
described in a file INSTALL.

http://members.aon.at/fschmid7/page_2_1.html
http://members.aon.at/fschmid7/examples_new.zip
http://ngspice.sourceforge.net/optimizers/ngspice-optimizer.7z
http://www.h-renrew.de/h/python_spice/optimisation.html
http://asco.sourceforge.net/index.html
http://ngspice.sourceforge.net/optimizers/asco-dist.7z
http://www.mcs.anl.gov/research/projects/mpich2/
http://asco.sourceforge.net/manual.html


23.5. NGSPICE OPTIMIZER USING ASCO 397

Some remarks on how to set up ASCO for ngspice are given in the following sections (more
to be added). These a meant not as a complete description, but are an addition the the ASCO
manual.

23.5.1 Three stage operational amplifier

This example is taken from chapter 6.2.2 “Tutorial #2” from the ASCO manual. The directory
examples/ngspice/amp3 contains four files:

amp3.cfg This file contains all configuration data for this optimization. Of special interest is
the following section, which sets the required measurements and the constraints on the measured
parameters:

# Measurements #
ac_power:VDD:MIN:0
dc_gain:VOUT:GE:122
unity_gain_frequency:VOUT:GE:3.15E6
phase_margin:VOUT:GE:51.8
phase_margin:VOUT:LE:70
amp3_slew_rate:VOUT:GE:0.777E6
#

Each of these entries is linked to a file in the /extract subdirectory, having exactly the same
names as given here, e.g. ac_power, dc_gain, unity_gain, phase_margin, and amp3_slew_rate.
Each of these files contains an # Info # section, which is currently not used. The # Com-
mands # section may contain a measurement command (including ASCO parameter #SYM-
BOL#, see file /extract/unity_gain_frequency). It also may contain a .control section (see file
/extract/phase_margin_min). During set-up #SYMBOL# is replaced by the file name, a leading
’z’, and a trailing number according to the above sequence, starting with 0.

amp3.sp This is the basic circuit description. Entries like #LM2# are ASCO-specific, defined
in the # Parameters # section of file amp3.cfg. ASCO will replace these parameter placeholders
with real values for simulation, determined by the optimization algorithm. The .control ... .endc
section is specific to ngspice. Entries to this section may deliver workarounds of some com-
mands not available in ngspice, but used in other simulators. You may also define additional
measurements, get access to variables and vectors, or define some data manipulation. In this
example the .control section contains an op measurement, required later for slew rate calcula-
tion, as well as the ac simulation, which has to occur before any further data evaluation. Data
from the op simulation are stored in a plot op1. Its name is saved in variable dt. The ac mea-
surements sets another plot ac1. To retrieve op data from the former plot, you have to use the
{$dt}.<vector> notation (see file /extract/amp3_slew_rate).

n.typ, p.typ MOSFET parameter files, to be included by amp3.sp.
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Testing the set-up

Copy asco-test.exe and ngspice_c.exe (console executable of ngspice) into the directory, and
run

$ asco-test -ngspice amp3

from the console window. Several files will be created during checking. If you look at <computer-
name>.sp: this is the input file for ngspice_c, generated by ASCO. You will find the additional
.measure commands and .control sections. The ’quit’ command will be added automatically
just before the .end command in its own .control section. asco-test will display error mes-
sages on the console, if the simulation or communication with ASCO is not o.k.. The out-
put file <computer-name>.out, generated by ngspice during each simulation, contains symbols
like zac_power0, zdc_gain1, zunity_gain_frequency2, zphase_margin3, zphase_margin4, and
zamp3_slew_rate5. These are used to communicate the ngspice output data to ASCO. ASCO
is searching for something like ’zdc_gain1 =’, and then takes the next token as the input value.
Calling phase_margin twice in amp3.cfg has lead to two measurements in two .control sections
with different symbols (zphase_margin3, zphase_margin4).

A failing test may result in an error message from ASCO. Sometimes, however, ASCO freezes
after some output statements. This may happen if ngspice issues an error message which cannot
be handled by ASCO. Here it may help calling ngspice directly with the input file generated by
ASCO:

$ ngspice_c <computer-name>.sp

Thus you may evaluate the ngspice messages directly.

Running the simulation

Copy (w)asco.exe, (w)asco-mpi.exe and ngspice_c.exe (console executable of ngspice) into the
directory, and run

$ asco -ngspice amp3

or alternatively (if MPICH is installed)

$ mpiexec -n 7 asco-mpi -ngspice amp3

The following graph 23.1 shows the acceleration of the optimization simulation on a multi-core
processor (i7 with 4 real or 8 virtual cores), 500 generations, if -n is varied. Speed is tripled, a
mere 15 min suffices to optimize 21 parameters of the amplifier.

23.5.2 Digital inverter

This example is taken from chapter 6.2.1 “Tutorial #1” from the ASCO manual. In addition
to the features already mentioned above, it adds Monte-Carlo and corner simulations. The file
inv.cfg contains the following section:

#Optimization Flow#
Alter:yes $do we want to do corner analysis?
MonteCarlo:yes $do we want to do MonteCarlo analysis?
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Figure 23.1: Optimization speed

AlterMC cost:3.00 $point at which we want to start ALTER and/or
MONTECARLO

ExecuteRF:no $Execute or no the RF module to add RF parasitics?
SomethingElse: $
#

Monte Carlo is switched on. It uses the AGAUSS function (see chapt. 22.2). Its parameters are
generated by ASCO from the data supplied by the inv.cfg section #Monte Carlo#. According to
the paper by Pelgrom on MOS transistor matching [22] the AGAUSS parameters are calculated
as

W = AGAUSS
(

W,
ABeta√

2 ·W ·L ·m
· W

100
·10−6,1

)
(23.1)

delvto = AGAUSS
(

0,
AV T√

2 ·W ·L ·m
·10−9,1

)
(23.2)

The .ALTER command is not available in ngspice. However, a new option in ngspice to the
altermod command (17.5.4) enables the simulation of design corners. The #Alter# section in
inv.cfg gives details. Specific to ngspice, again several .control section are used.

# ALTER #
.control
* gate oxide thickness varied
altermod nm pm file [b3.min b3.typ b3.max]
.endc
.control
* power supply variation
alter vdd=[2.0 2.1 2.2]
.endc
.control
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run
.endc
#

NMOS (nm) and PMOS (pm) model parameter sets are loaded from three different model files,
each containing both NMOS and PMOS sets. b3.typ is assembled from the original parameter
files n.typ and p.typ, provided with original ASCO, with some adaptation to ngspice BSIM3.
The min and max sets are artificially created in that only the gate oxide thickness deviates ±1
nm from what is found in model file b3.typ. In addition the power supply voltage is varied, so
in total you will find 3 x 3 simulation combinations in the input file <computer-name>.sp (after
running asco-test).

23.5.3 Bandpass

This example is taken from chapter 6.2.4 “Tutorial #4” from the ASCO manual. S11 in the
passband is to be maximised. S21 is used to extract side lobe parameters. The .net command is
not available in ngspice, so S11 and S21 are derived with a script in file bandpass.sp as described
in chapt. 17.9. The measurements requested in bandpass.cfg as

# Measurements #
Left_Side_Lobe:---:LE:-20
Pass_Band_Ripple:---:GE:-1
Right_Side_Lobe:---:LE:-20
S11_In_Band:---:MAX:---
#

are realized as ’measure’ commands inside of control sections (see files in directory extract).
The result of a ’measure’ statement is a vector, which may be processed by commands in the
following lines. In file extract/S1_In_Band #Symbol# is made available only after a short calcu-
lation (inversion of sign), using the ’print’ command. ’quit’ has been added to this entry because
it will become the final control section in <computer-name>.sp. A disadvantage of ’measure’
inside of a .control section is, that parameters from .param statements may not be used (as is
done in example 23.5.4).

The bandpass example includes the calculation of RF parasitic elements defined in rfmodule.cfg
(see chapt. 7.5 of the ASCO manual). This calculation is invoked by setting

ExecuteRF:yes $Execute or no the RF module to add RF parasitics?

in bandpass.cfg. The two subcircuits LBOND_sub and CSMD_sub are generated in <computer-
name>.sp to simulate these effects.

23.5.4 Class-E power amplifier

This example is taken from chapter 6.2.3 “Tutorial #3” from the ASCO manual. In this example
the ASCO post processing is applied in file extract/P_OUT (see chapter 7.4 of the ASCO man-
ual.). In this example .measurement statements are used. They allow using parameters from
.param statements, because they will be located outside of .control sections, but do not allow to
do data post processing inside of ngspice. You may use ASCO post processing instead.
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Notes

24.1 Glossary

card A logical SPICE input line. A card may be extended through the use of the “+” sign in
SPICE, thereby allowing it to take up multiple lines in a SPICE deck.

code model A model of a device, function, component, etc. which is based solely on a C
programming language-based function. In addition to the code models included with the
XSPICE option of the ngspice simulator, you can use code models that you develop for
circuit modeling.

deck A collection of SPICE cards which together specify all input information required in
order to perform an analysis. A “deck” of “cards” will in fact be contained within a file
on the host computer system.

element card A single, logical line in an ngspice circuit description deck which describes a
circuit element. Circuit elements are connected to each other to form circuits (e.g., a
logical card which describes a resistor, such as R1 2 0 10K, is an element card).

instance A unique occurrence of a circuit element. See “element card”, in which the instance
“R1” is specified as a unique element (instance) in a hypothetical circuit description.

macro A macro, in the context of this document, refers to a C language macro which sup-
ports the construction of user-defined models by simplifying input/output and parameter-
passing operations within the Model Definition File.

.mod Refers to the Model Definition File in XSPICE. The file suffix reflects the file-name of
the model definition file: cfunc.mod.

.model Refers to a model card associated with an element card in ngspice. A model card allows
for data defining an instance to be conveniently located in the ngspice deck such that the
general layout of the elements is more readable.

Nutmeg The ngspice default post-processor. This provides a simple stand-alone simulator
interface which can be used with the ngspice simulator to display and plot simulator raw
files.
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subcircuit A “device” within an ngspice deck which is defined in terms of a group of element
cards and which can be referenced in other parts of the ngspice deck through element
cards.

24.2 Acronyms and Abbreviations

ATE Automatic Test Equipment

CAE Computer-Aided Engineering

CCCS Current Controlled Current Source.

CCVS Current Controlled Voltage Source.

FET Field Effect Transistor

IDD Interface Design Document

IFS Refers to the Interface Specification File. The abbreviation reflects the file name of the
Interface Specification File: ifspec.ifs.

MNA Modified Nodal Analysis

MOSFET Metal Oxide Semiconductor Field Effect Transistor

PWL Piece-Wise Linear

RAM Random Access Memory

ROM Read Only Memory

SDD Software Design Document

SI Simulator Interface

SPICE Simulation Program with Integrated Circuit Emphasis. This program was developed at
the University of California at Berkeley and is the origin of ngspice.

SPICE3 Version 3 of SPICE.

SRS Software Requirements Specification

SUM Software User’s Manual

UCB University of California at Berkeley

UDN User-Defined Node(s)

VCCS Voltage Controlled Current Source.

VCVS Voltage Controlled Voltage Source

XSPICE Extended SPICE; option to ngspice integrating predefined or user defined code mod-
els for event-driven mixed-signal simulation.
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Chapter 25

XSPICE Basics

25.1 ngspice with the XSPICE option

The XSPICE option allows you to add event-driven simulation capabilities to NGSPICE. NGSPICE
now is the main software program that performs mathematical simulation of a circuit specified
by you, the user. It takes input in the form of commands and circuit descriptions and produces
output data (e.g. voltages, currents, digital states, and waveforms) that describe the circuit’s
behavior.

Plain NGSPICE is designed for analog simulation and is based exclusively on matrix solution
techniques. The XSPICE option adds even-driven simulation capabilities. Thus, designs that
contain significant portions of digital circuitry can be efficiently simulated together with analog
components. NGSPICE with XSPICE option also includes a “User-Defined Node” capability
that allows event-driven simulations to be carried out with any type of data.

The XSPICE option has been developed by the Computer Science and Information Technology
Laboratory at Georgia Tech Research Institute of the Georgia Institute of Technology, Atlanta,
Georgia 30332 at around 1990 and enhanced by the NGSPICE team. The manual is based on
the original XSPICE user’s manual, made available from Georgia Tech.

In the following, the term “XSPICE” may be read as “NGSPICE with XSPICE code model sub-
system enabled”. You may enable the option by adding --enable-xspice to the ./configure
command. The MS Windows distribution already contains the XSPICE option.

25.2 The XSPICE Code Model Subsystem

The new component of ngspice, the Code Model Subsystem, provides the tools needed to model
the various parts of your system. While NGSPICE is targeted primarily at integrated circuit (IC)
analysis, XSPICE includes features to model and simulate board-level and system-level designs
as well. The Code Model Subsystem is central to this new capability, providing XSPICE with
an extensive set of models to use in designs and allowing you to add your own models to this
model set.

The NGSPICE simulator at the core of XSPICE includes built-in models for discrete com-
ponents commonly found within integrated circuits. These “model primitives” include compo-
nents such as resistors, capacitors, diodes, and transistors. The XSPICE Code Model Subsystem
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extends this set of primitives in two ways. First, it provides a library of over 40 additional prim-
itives, including summers, integrators, digital gates, controlled oscillators, s-domain transfer
functions, and digital state machines. See chapter 12 for a description of the library entries.
Second, it adds a code model generator to ngspice which provides a set of programming utili-
ties to make it easy for you to create your own models by writing them in the C programming
language.

The code models are generated upon compiling ngspice. They are stored in shared libraries,
which may be distributed independently from the ngspice sources. Upon runtime ngspice will
load the code model libraries and make the code model instances available for simulation.

25.3 XSPICE Top-Level Diagram

A top-level diagram of the XSPICE system integrated into ngspice is shown in Figure 25.1.
The XSPICE Simulator is made up of the NGSPICE core, the event-driven algorithm, circuit
description syntax parser extensions, a loading routine for code models, and the Nutmeg user
interface. The XSPICE Code Model Subsystem consists of the Code Model Generator, 5 stan-
dard code model library sources with more than 40 code models, the sources for Node Type
Libraries, and all the interfaces to User-Defined Code Models and to User-Defined Node Types.

Figure 25.1: ngspice/XSPICE Top-Level Diagram



Chapter 26

Execution Procedures

This chapter covers operation of the XSPICE simulator and the Code Model Subsystem. It
begins with background material on simulation and modeling and then discusses the analysis
modes supported in XSPICE and the circuit description syntax used for modeling. Detailed
descriptions of the predefined Code Models and Node Types provided in the XSPICE libraries
are also included.

26.1 Simulation and Modeling Overview

This section introduces the concepts of circuit simulation and modeling. It is intended primarily
for users who have little or no previous experience with circuit simulators, and also for those
who have not used circuit simulators recently. However, experienced SPICE users may wish to
scan the material presented here since it provides background for new Code Model and User-
Defined Node capabilities of the XSPICE option.

26.1.1 Describing the Circuit

This section provides an overview of the circuit description syntax expected by the XSPICE
simulator. A general understanding of circuit description syntax will be helpful to you should
you encounter problems with your circuit and need to examine the simulator’s error messages,
or should you wish to develop your own models.

This section will introduce you to the creation of circuit description input files using the Nutmeg
user interface. Note that this material is presented in an overview form. Details of circuit
description syntax are given later in this chapter and in the previous chapters of this manual.

26.1.1.1 Example Circuit Description Input

Although different SPICE-based simulators may include various enhancements to the basic
version from the University of California at Berkeley, most use a similar approach in describing
circuits. This approach involves capturing the information present in a circuit schematic in
the form of a text file that follows a defined format. This format requires the assignment of
alphanumeric identifiers to each circuit node, the assignment of component identifiers to each
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Figure 26.1: Example Circuit 1

circuit device, and the definition of the significant parameters for each device. For example, the
circuit description below shows the equivalent input file for the circuit shown in Figure26.1.

Small Signal Amplifier
*
*This circuit simulates a simple small signal amplifier.
*
Vin Input 0 0 SIN(0 .1 500Hz)
R_source Input Amp_In 100
C1 Amp_In 0 1uF
R_Amp_Input Amp_In 0 1MEG
E1 (Amp:Out 0) (Amp_In 0) -10
R_Load Amp_Out 0 1000
*
.Tran 1.0u 0.01
*
.end

This file exhibits many of the most important properties common to all SPICE circuit descrip-
tion files including the following:

• The first line of the file is always interpreted as the title of the circuit. The title may
consist of any text string.

• Lines which provide user comments, but no circuit information, are begun by an asterisk.

• A circuit device is specified by a device name, followed by the node(s) to which it is
connected, and then by any required parameter information.

• The first character of a device name tells the simulator what kind of device it is (e.g. R =
resistor, C = capacitor, E = voltage controlled voltage source).

• Nodes may be labeled with any alphanumeric identifier. The only specific labeling re-
quirement is that 0 must be used for ground.

• A line that begins with a dot is a “control directive”. Control directives are used most
frequently for specifying the type of analysis the simulator is to carry out.
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• An “.end” statement must be included at the end of the file.

• With the exception of the Title and .end statements, the order in which the circuit file is
defined is arbitrary.

• All identifiers are case insensitive - the identifier ‘npn’ is equivalent to ‘NPN’ and to
‘nPn’.

• Spaces and parenthesis are treated as white space.

• Long lines may be continued on a succeeding line by beginning the next line with a ‘+’
in the first column.

In this example, the title of the circuit is ‘Small Signal Amplifier’. Three comment lines are
included before the actual circuit description begins. The first device in the circuit is voltage
source ‘Vin’, which is connected between node ‘Input’ and ‘0’ (ground). The parameters after
the nodes specify that the source has an initial value of 0, a wave shape of ‘SIN’, and a DC
offset, amplitude, and frequency of 0, .1, and 500 respectively. The next device in the circuit is
resistor ‘R_Source’, which is connected between nodes ‘Input’ and ‘Amp_In’, with a value of
100 Ohms. The remaining device lines in the file are interpreted similarly.

The control directive that begins with ‘.Tran’ specifies that the simulator should carry out a
simulation using the Transient analysis mode. In this example, the parameters to the transient
analysis control directive specify that the maximum time-step allowed is 1 microsecond and
that the circuit should be simulated for 0.01 seconds of circuit time.

Other control cards are used for other analysis modes. For example, if a frequency response plot
is desired, perhaps to determine the effect of the capacitor in the circuit, the following statement
will instruct the simulator to perform a frequency analysis from 100 Hz to 10 MHz in decade
intervals with ten points per decade.

.ac dec 10 100 10meg

To determine the quiescent operating point of the circuit, the following statement may be in-
serted in the file.

.op

A fourth analysis type supported by ngspice is swept DC analysis. An example control state-
ment for the analysis mode is

.dc Vin -0.1 0.2 .05

This statement specifies a DC sweep which varies the source Vin from -100 millivolts to +200
millivolts in steps of 50 millivolts.
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Figure 26.2: Example Circuit 2

26.1.1.2 Models and Subcircuits

The file discussed in the previous section illustrated the most basic syntax rules of a circuit
description file. However, ngspice (and other SPICE-based simulators) include many other
features which allow for accurate modeling of semiconductor devices such as diodes and tran-
sistors and for grouping elements of a circuit into a macro or ‘subcircuit’ description which can
be reused throughout a circuit description. For instance, the file shown below is a representation
of the schematic shown in Figure 26.2.

Small Signal Amplifier with Limit Diodes
*
*This circuit simulates a small signal amplifier
*with a diode limiter.
*
.dc Vin -1 1 .05
*
Vin Input 0 DC 0
R_source Input Amp_In 100
*
D_Neg 0 Amp_In 1n4148
D_Pos Amp_In 0 1n4148
*
C1 Amp_In 0 1uF
X1 Amp_In 0 Amp.Out Amplifier
R_Load Amp_Out 0 1000
*
.model 1n4148 D (is=2.495E-09 rs=4.755E-01 n=1.679E+00
+ tt=3.030E-09 cjo=1.700E-12 vj=1 m=1.959E-01 bv=1.000E+02
+ ibv=1.000E-04)
*
.subckt Amplifier Input Common Output
E1 (Output Common) (Input Common) -10
R_Input Input Common 1meg
.ends Amplifier
*
.end
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This is the same basic circuit as in the initial example, with the addition of two components and
some changes to the simulation file. The two diodes have been included to illustrate the use of
device models, and the amplifier is implemented with a subcircuit. Additionally, this file shows
the use of the swept DC control card.

Device Models Device models allow you to specify, when required, many of the parameters
of the devices being simulated. In this example, model statements are used to define the silicon
diodes. Electrically, the diodes serve to limit the voltage at the amplifier input to values between
about ±700 millivolts. The diode is simulated by first declaring the “instance” of each diode
with a device statement. Instead of attempting to provide parameter information separately for
both diodes, the label “1n4148” alerts the simulator that a separate model statement is included
in the file which provides the necessary electrical specifications for the device (“1n4148” is the
part number for the type of diode the model is meant to simulate).

The model statement that provides this information is:

.model 1n4148 D (is=2.495E-09 rs=4.755E-01 n=1.679E+00
+ tt=3.030E-09 cjo=1.700E-12 vj=1 m=1.959E-01
+ bv=1.000E+02 ibv=1.000E-04)

The model statement always begins with the string “.model” followed by an identifier and the
model type (D for diode, NPN for NPN transistors, etc).

The optional parameters (‘is’, ‘rs’, ‘n’, ‘etc.’) shown in this example configure the simulator’s
mathematical model of the diode to match the specific behavior of a particular part (e.g. a
“1n4148”).

Subcircuits In some applications, describing a device by embedding the required elements in
the main circuit file, as is done for the amplifier in Figure 26.1, is not desirable. A hierarchical
approach may be taken by using subcircuits. An example of a subcircuit statement is shown in
the second circuit file:

X1 Amp_In 0 Amp_Out

Amplifier Subcircuits are always identified by a device label beginning with “X”. Just as with
other devices, all of the connected nodes are specified. Notice, in this example, that three nodes
are used. Finally, the name of the subcircuit is specified. Elsewhere in the circuit file, the
simulator looks for a statement of the form:

.subckt <Name> <Node1> <Node2> <Node3> ...

This statement specifies that the lines that follow are part of the Amplifier subcircuit, and that the
three nodes listed are to be treated wherever they occur in the subcircuit definition as referring,
respectively, to the nodes on the main circuit from which the subcircuit was called. Normal
device, model, and comment statements may then follow. The subcircuit definition is concluded
with a statement of the form:

.ends <Name>
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26.1.1.3 XSPICE Code Models

In the previous example, the specification of the amplifier was accomplished by using a NGSPICE
Voltage Controlled Voltage Source device. This is an idealization of the actual amplifier. Prac-
tical amplifiers include numerous non-ideal effects, such as offset error voltages and non-ideal
input and output impedances. The accurate simulation of complex, real-world components can
lead to cumbersome subcircuit files, long simulation run times, and difficulties in synthesizing
the behavior to be modeled from a limited set of internal devices known to the simulator.

To address these problems, XSPICE allows you to create Code Models which simulate complex,
non-ideal effects without the need to develop a subcircuit design. For example, the following file
provides simulation of the circuit in Figure 26.2, but with the subcircuit amplifier replaced with
a Code Model called ‘Amp’ that models several non-ideal effects including input and output
impedance and input offset voltage.

Small Signal Amplifier
*
*This circuit simulates a small signal amplifier
*with a diode limiter.
*
.dc Vin -1 1 .05
*
Vin Input 0 DC 0
R_source Input Amp_In 100
*
D_Neg 0 Amp_In 1n4148
D_Pos Amp_In 0 1n4148
*
C1 Amp_In 0 1uF
A1 Amp_In 0 Amp_Out Amplifier
R_Load Amp_Out 0 1000
*
.model 1n4148 D (is=2.495E-09 rs=4.755E-01 n=1.679E+00
+ tt=3.030E-09 cjo=1.700E-12 vj=1 m=1.959E-01 bv=1.000E+02
+ ibv=1.000E-04)
*
.model Amplifier Amp (gain = -10 in_offset = 1e-3
+ rin = 1meg rout = 0.4)
*
.end

A statement with a device label beginning with “A” alerts the simulator that the device uses
a Code Model. The model statement is similar in form to the one used to specify the diode.
The model label ‘Amp’ directs XSPICE to use the code model with that name. Parameter
information has been added to specify a gain of -10, an input offset of 1 millivolt, an input
impedance of 1 meg ohm, and an output impedance of 0.4 ohm. Subsequent sections of this
document detail the steps required to create such a Code Model and include it in the XSPICE
simulator.
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26.1.1.4 Node Bridge Models

When a mixed-mode simulator is used, some method must be provided for translating data
between the different simulation algorithms. XSPICE’s Code Model support allows you to
develop models that work under the analog simulation algorithm, the event-driven simulation
algorithm, or both at once.

In XSPICE, models developed for the express purpose of translating between the different al-
gorithms or between different User-Defined Node types are called “Node Bridge” models. For
translations between the built-in analog and digital types, predefined node bridge models are
included in the XSPICE Code Model Library.

26.1.1.5 Practical Model Development

In practice, developing models often involves using a combination of NGSPICE passive de-
vices, device models, subcircuits, and XSPICE Code Models. XSPICE’s Code Models may be
seen as an extension to the set of device models offered in standard NGSPICE. The collection
of over 40 predefined Code Models included with XSPICE provides you with an enriched set of
modeling primitives with which to build subcircuit models. In general, you should first attempt
to construct your models from these available primitives. This is often the quickest and easiest
method.

If you find that you cannot easily design a subcircuit to accomplish your goal using the available
primitives, then you should turn to the code modeling approach. Because they are written in a
general purpose programming language (C), code models enable you to simulate virtually any
behavior for which you can develop a set of equations or algorithms.

26.2 Circuit Description Syntax

If you need to debug a simulation, if you are planning to develop your own models, or if you
are using the XSPICE simulator through the Nutmeg user interface, you will need to become
familiar with the circuit description language.

The previous sections presented example circuit description input files. The following sections
provide more detail on XSPICE circuit descriptions with particular emphasis on the syntax
for creating and using models. First, the language and syntax of the NGSPICE simulator are
described and references to additional information are given. Next, XSPICE extensions to the
ngspice syntax are detailed. Finally, various enhancements to NGSPICE operation are discussed
including polynomial sources, arbitrary phase sources, supply ramping, matrix conditioning,
convergence options, and debugging support.

26.2.1 XSPICE Syntax Extensions

In the preceding discussion, NGSPICE syntax was reviewed, and those features of NGSPICE
that are specifically supported by the XSPICE simulator were enumerated. In addition to these
features, there exist extensions to the NGSPICE capabilities that provide much more flexibility
in describing and simulating a circuit. The following sections describe these capabilities, as
well as the syntax required to make use of them.



416 CHAPTER 26. EXECUTION PROCEDURES

26.2.1.1 Convergence Debugging Support

When a simulation is failing to converge, the simulator can be asked to return convergence diag-
nostic information that may be useful in identifying the areas of the circuit in which convergence
problems are occurring. When running through the Nutmeg user interface, these messages are
written directly to the terminal.

26.2.1.2 Digital Nodes

Support is included for digital nodes that are simulated by an event-driven algorithm. Because
the event-driven algorithm is faster than the standard SPICE matrix solution algorithm, and
because all “digital”, “real”, “int” and User-Defined Node types make use of the event-driven
algorithm, reduced simulation time for circuits that include these models can be anticipated
compared to simulation of the same circuit using analog code models and nodes.

26.2.1.3 User-Defined Nodes

Support is provided for User Defined Nodes that operate with the event-driven algorithm. These
nodes allow the passing of arbitrary data structures among models. The real and integer node
types supplied with XSPICE are actually predefined User-Defined Node types.

26.2.1.4 Supply Ramping

A supply ramping function is provided by the simulator as an option to a transient analysis
to simulate the turn-on of power supplies to a board level circuit. To enable this option, the
compile time flag XSPICE_EXP has to be set, e.g. by adding CFLAGS="-DXSPICE_EXP" to
the ./configure command line. The supply ramping function linearly ramps the values of all
independent sources and the capacitor and inductor code models (code model extension) with
initial conditions toward their final value at a rate which you define. A complete ngspice deck
example of usage of the ramptime option is shown below.
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Example:

Supply ramping option
*
* This circuit demonstrates the use of the option
* "ramptime" which ramps independent sources and the
* capacitor and inductor initial conditions from
* zero to their final value during the time period
* specified.
*
*
.tran 0.1 5
.option ramptime =0.2
* a1 1 0 cap
.model cap capacitor (c=1000uf ic=1)
r1 1 0 1k
*
a2 2 0 ind
.model ind inductor (l=1H ic=1)
r2 2 0 1.0
*
v1 3 0 1.0
r3 3 0 1k
*
i1 4 0 1e-3
r4 4 0 1k
*
v2 5 0 0.0 sin(0 1 0.3 0 0 45.0)
r5 5 0 1k
*
.end

26.3 How to create code models

The following instruction to create an additional code model uses the ngspice infrastructure and
some ’intelligent’ copy and paste. As an example an extra code model d_xxor is created in the
xtradev shared library, reusing the existing d_xor model from the digital library. More detailed
information will be made available in chapter 28.

You should have downloaded ngspice, either the most recent distribution or from the Git reposi-
tory, and compiled and installed it properly according to your operating system and the instruc-
tions given in chapter 32 of the Appendix, especially chapt. 32.1.4 (for LINUX users), or chapt.
32.2.1 for MINGW and MS Windows (MS Visual Studio will not do, because we not yet have
integrated the code model generator into this compiler! You may however use all code models
later with any ngspice executable.) . Then Cd into directory ngspice/src/xspice/icm/xtradev.
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Create a new directory

mkdir d_xxor

Copy the two files cfunc.mod and ifspec.ifs from ngspice/src/xspice/icm/digital/d_xor to ngspice/s-
rc/xspice/icm/xtradev/d_xxor. These two files may serve as a template for your new model!

For simplicity reasons we do only a very simple editing to these files here, in fact the function-
ality is not changed, just the name translated to a new model. Edit the new cfunc.mod: In lines
5, 28, 122, 138, 167, 178 replace the old name (d_xor) by the new name d_xxor. Edit the new
ifspec.ifs: In lines 16, 23, 24 replace cm_d_xor by cm_d_xxor and d_xor by d_xxor.

Make ngspice aware of the new code model by editing file
ngspice/src/xspice/icm/xtradev/modpath.lst:

Add a line with the new model name d_xxor.

Redo ngspice by entering directory ngspice/release, and issuing the commands:

make

sudo make install

And that’s it! In ngspice/release/src/xspice/icm/xtradev/ you now will find cfunc.c and ifspec.c
and the corresponding object files. The new code model d_xxor resides in the shared library
xtradev.cm, and is available after ngspice is started. As a test example you may edit
ngspice/src/xspice/examples/digital_models1.deck, and change line 60 to the new model:

.model d_xor1 d_xxor (rise_delay=1.0e-6 fall_delay=2.0e-6 input_load=1.0e-12)

The complete input file follows:
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Code Model Test: new xxor
*
*** analysis type ***
.tran .01s 4s
*
*** input sources ***
*
v2 200 0 DC PWL( (0 0.0) (2 0.0) (2.0000000001 1.0) (3 1.0) )
*
v1 100 0 DC PWL( (0 0.0) (1.0 0.0) (1.0000000001 1.0) (2 1.0)
+ (2.0000000001 0.0) (3 0.0) (3.0000000001 1.0) (4 1.0) )
*
*** resistors to ground ***
r1 100 0 1k
r2 200 0 1k
*
*** adc_bridge blocks ***
aconverter [200 100] [2 1] adc_bridge1
.model adc_bridge1 adc_bridge (in_low =0.1 in_high =0.9
+ rise_delay =1.0e-12 fall_delay =1.0e-12)
*
*** xor block ***
a7 [1 2] 70 d_xor1
.model d_xor1 d_xxor (rise_delay =1.0e-6 fall_delay =2.0e-6
+ input_load =1.0e-12)
*
*** dac_bridge blocks ****
abridge1 [70] [out] dac1
.model dac1 dac_bridge(out_low = 0.7 out_high = 3.5
+ out_undef = 2.2 input_load = 5.0e-12 t_rise = 50e-9
+ t_fall = 20e-9)
*
*** simulation and plotting ***
.control
run
plot allv
.endc
*
.end

An analog input, delivered by the pwl voltage sources, is transformed into the digital domain
by an adc_bridge, processed by the new code model d_xxor, and then translated back into the
analog domain.

If you want to change the functionality of the new model, you have to edit ifspec.ifs for the
code model interface and cfunc.mod for the detailed functionality of the new model. Please see
chapter 28, especially chapters 28.6 ff. for any details. And of course you may take the existing
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analog, digital, mixed signal and other existing code models (to be found in the subdirectories
to ngspice/release/src/xspice/icm) as stimulating examples for your work.



Chapter 27

Example circuits

The following chapter is designed to demonstrate XSPICE features. The first example circuit
models the circuit of Figure 26.2 using the XSPICE gain block code model to substitute for
the more complex and computationally expensive ngspice transistor model. This example illus-
trates one way in which XSPICE code models can be used to raise the level of abstraction in
circuit modeling to improve simulation speed.

The next example, shown in Figure 27.1, illustrates many of the more advanced features of-
fered by XSPICE. This circuit is a mixed-mode design incorporating digital data, analog data,
and User-Defined Node data together in the same simulation. Some of the important features
illustrated include:

• Creating and compiling Code Models

• Creating an XSPICE executable that incorporates these new models

• The use of "node bridge" models to translate data between the data types in the simulation

• Plotting analog and event-driven (digital and User-Defined Node) data

• Using the "eprint" command to print event-driven data

Throughout these examples, we assume that ngspice with XSPICE option has already been
installed on your system and that your user account has been set up with the proper search path
and environment variable data.

The examples also assume that you are running under LINUX and will use standard LINUX
commands such as “cp” for copying files, etc. If you are using a different set up, with different
operating system command names, you should be able to translate the commands shown into
those suitable for your installation. Finally, file system path-names given in the examples as-
sume that ngspice + XSPICE has been installed on your system in directory “/usr/local/xspice-
1-0”. If your installation is different, you should substitute the appropriate root path-name
where appropriate.

27.1 Amplifier with XSPICE model “gain”

The circuit, as has been shown in Figure 26.2, is extended here by using the XSPICE code
model "gain". The ngspice circuit description for this circuit is shown below.

421
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Example:

A t r a n s i s t o r a m p l i f i e r c i r c u i t
*
. t r a n 1e−5 2e−3
*
v i n 1 0 0 . 0 ac 1 . 0 s i n (0 1 1k )
*
c c o u p l e 1 i n 10uF
r z i n i n 0 19 .35 k
*
aamp i n a o u t g a i n _ b l o c k
. model g a i n _ b l o c k g a i n ( g a i n = −3.9 o u t _ o f f s e t = 7 . 0 0 3 )
*
r z o u t a o u t c o l l 3 . 9 k
r b i g c o l l 0 1 e12
*
. end

Notice the component "aamp". This is an XSPICE code model device. All XSPICE code
model devices begin with the letter "a" to distinguish them from other ngspice devices. The
actual code model used is referenced through a user-defined identifier at the end of the line - in
this case"gain_block". The type of code model used and its parameters appear on the associated
.model card. In this example, the gain has been specified as -3.9 to approximate the gain of the
transistor amplifier, and the output offset (out_offset) has been set to 7.003 according to the DC
bias point information obtained from the DC analysis in Example 1.

Notice also that input and output impedances of the one-transistor amplifier circuit are modeled
with the resistors "rzin" and "rzout", since the "gain" code model defaults to an ideal voltage-
input, voltage-output device with infinite input impedance and zero output impedance.

Lastly, note that a special resistor "rbig" with value "1e12" has been included at the opposite
side of the output impedance resistor "rzout". This resistor is required by ngspice’s matrix
solution formula. Without it, the resistor "rzout" would have only one connection to the circuit,
and an ill-formed matrix could result. One way to avoid such problems without adding resistors
explicitly is to use the ngspice "rshunt" option described in this document under ngspice Syntax
Extensions/General Enhancements.

To simulate this circuit, copy the file xspice_c2.cir from the directory /src/xspice/examples into
a directory in your account.

$ cp /examples/xspice/xspice_c2.cir xspice_c2.cir

Invoke the simulator on this circuit:

$ ngspice xspice_c2.cir

After a few moments, you should see the ngspice prompt:

ngspice 1 ->
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Now issue the "run" command and when the prompt returns, issue the "plot" command to
examine the voltage at the node "coll".

ngspice 1 -> run
ngspice 2 -> plot coll

The resulting waveform closely matches that from the original transistor amplifier circuit sim-
ulated in Example 1.

When you are done, enter the "quit" command to leave the simulator and return to the command
line.

ngspice 3 -> quit

So long.

Using the "rusage" command, you can verify that this abstract model of the transistor amplifier
runs somewhat faster than the full circuit of Example 1. This is because the code model is less
complex computationally. This demonstrates one important use of XSPICE code models - to
reduce run time by modeling circuits at a higher level of abstraction. Speed improvements vary
and are most pronounced when a large amount of low-level circuitry can be replaced by a small
number of code models and additional components.

27.2 XSPICE advanced usage

27.2.1 Circuit example C3

An equally important use of code models is in creating models for circuits and systems that do
not easily lend themselves to synthesis using standard ngspice primitives (resistors, capacitors,
diodes, transistors, etc.). This occurs often when trying to create models of ICs for use in simu-
lating board-level designs. Creating models of operational amplifiers such as an LM741 or timer
ICs such as an LM555 is greatly simplified through the use of XSPICE code models. Another
example of code model use is shown in the next example where a complete sampled-data system
is simulated using XSPICE analog, digital, and User-Defined Node types simultaneously.

The circuit shown in Figure 27.1 is designed to demonstrate several of the more advanced
features of XSPICE. In this example, you will be introduced to the process of creating code
models and linking them into ngspice. You will also learn how to print and plot the results of
event-driven analysis data. The ngspice/XSPICE circuit description for this example is shown
below.
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Figure 27.1: Example Circuit C3

Example:

Mixed IO t y p e s
* Th i s c i r c u i t c o n t a i n s a m i x t u r e o f IO t y p e s , i n c l u d i n g
* ana log , d i g i t a l , u se r−d e f i n e d ( r e a l ) , and ’ n u l l ’ .
*
* The c i r c u i t d e m o n s t r a t e s t h e use o f t h e d i g i t a l and
* use r−d e f i n e d node c a p a b i l i t y t o model system− l e v e l d e s i g n s
* such as sampled−d a t a f i l t e r s . The s i m u l a t e d c i r c u i t
* c o n t a i n s a d i g i t a l o s c i l l a t o r e n a b l e d a f t e r 100 us . The
* s q u a r e wave o s c i l l a t o r o u t p u t i s d i v i d e d by 8 wi th a
* r i p p l e c o u n t e r . The r e s u l t i s p a s s e d t h r o u g h a d i g i t a l
* f i l t e r t o c o n v e r t i t t o a s i n e wave .
*
. t r a n 1e−5 1e−3
*
v1 1 0 0 . 0 p u l s e (0 1 1e−4 1e−6)
r1 1 0 1k
*
a b r i d g e 1 [ 1 ] [ e n a b l e ] a t o d
. model a t o d a d c _ b r i d g e
*
a c l k [ e n a b l e c l k ] c l k nand
. model nand d_nand ( r i s e _ d e l a y =1e−5 f a l l _ d e l a y =1e−5)
*
a d i v 2 d i v 2 _ o u t c l k NULL NULL NULL d i v 2 _ o u t d f f
a d i v 4 d i v 4 _ o u t d i v 2 _ o u t NULL NULL NULL d i v 4 _ o u t d f f
a d i v 8 d i v 8 _ o u t d i v 4 _ o u t NULL NULL NULL d i v 8 _ o u t d f f
. model d f f d _ d f f
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Example (continued):

a b r i d g e 2 d i v 8 _ o u t e n a b l e f i l t _ i n n o d e _ b r i d g e 2
. model n o d e _ b r i d g e 2 d _ t o _ r e a l ( z e r o =−1 one =1)
*
x f i l t e r f i l t _ i n c l k f i l t _ o u t d i g _ f i l t e r
*
a b r i d g e 3 f i l t _ o u t a _ o u t n o d e _ b r i d g e 3
. model n o d e _ b r i d g e 3 r e a l _ t o _ v
*
r l p f 1 a _ o u t oa_minus 10k
*
x l p f 0 oa_minus l p f _ o u t opamp
*
r l p f 2 oa_minus l p f _ o u t 10k
c l p f l p f _ o u t oa_minus 0 . 0 1 uF
***************************************
. s u b c k t d i g _ f i l t e r f i l t _ i n c l k f i l t _ o u t
. model n0 r e a l _ g a i n ( g a i n = 1 . 0 )
. model n1 r e a l _ g a i n ( g a i n = 2 . 0 )
. model n2 r e a l _ g a i n ( g a i n = 1 . 0 )
. model g1 r e a l _ g a i n ( g a i n = 0 . 1 2 5 )
. model zm1 r e a l _ d e l a y
. model d0a r e a l _ g a i n ( g a i n =−0.75)
. model d1a r e a l _ g a i n ( g a i n = 0 . 5 6 2 5 )
. model d0b r e a l _ g a i n ( g a i n =−0.3438)
. model d1b r e a l _ g a i n ( g a i n = 1 . 0 )
*
an0a f i l t _ i n x0a n0
an1a f i l t _ i n x1a n1
an2a f i l t _ i n x2a n2
*
az0a x0a c l k x1a zm1
az1a x1a c l k x2a zm1
*
ad0a x2a x0a d0a
ad1a x2a x1a d1a
*
az2a x2a f i l t 1 _ o u t g1
az3a f i l t 1 _ o u t c l k f i l t 2 _ i n zm1
*
an0b f i l t 2 _ i n x0b n0
an1b f i l t 2 _ i n x1b n1
an2b f i l t 2 _ i n x2b n2
*
az0b x0b c l k x1b zm1
az1b x1b c l k x2b zm1
*
ad0 x2b x0b d0b
ad1 x2b x1b d1b
*
az2b x2b c l k f i l t _ o u t zm1
. ends d i g _ f i l t e r
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Example (continued):

. s u b c k t opamp p l u s minus o u t
*
r1 p l u s minus 300k
a1 %vd ( p l u s minus ) o u t i n t l im
. model l im l i m i t ( o u t _ l o w e r _ l i m i t = −12 o u t _ u p p e r _ l i m i t = 12
+ f r a c t i o n = t r u e l i m i t _ r a n g e = 0 . 2 g a i n =300 e3 )
r3 o u t i n t o u t 5 0 . 0
r2 o u t 0 1 e12
*
. ends opamp
*
. end

This circuit is a high-level design of a sampled-data filter. An analog step waveform (created
from a ngspice "pulse" waveform) is introduced as "v1" and converted to digital by code model
instance "abridge". This digital data is used to enable a Nand-Gate oscillator ("aclk") after a
short delay. The Nand-Gate oscillator generates a square-wave clock signal with a period of
approximately two times the gate delay, which is specified as 1e-5 seconds. This 50 KHz clock
is divided by a series of D Flip Flops ("adiv2", "adiv4", "adiv8") to produce a square-wave at
approximately 6.25 KHz. Note particularly the use of the reserved word "NULL" for certain
nodes on the D Flip Flops. This tells the code model that there is no node connected to these
ports of the flip flop.

The divide-by-8 and enable waveforms are converted by the instance "abridge2" to the format
required by the User-Defined Node type "real", which expected real-valued data. The output of
this instance on node "filt_in" is a real valued square wave which oscillates between values of
-1 and 1. Note that the associated code model "d_to_real" is not part of the original XSPICE
code model library but has been added later to ngspice.

This signal is then passed through subcircuit "xfilter" which contains a digital low-pass filter
clocked by node "clk". The result of passing this square-wave through the digital low-pass filter
is the production of a sampled sine wave (the filter passes only the fundamental of the square-
wave input) on node "filt_out". This signal is then converted back to ngspice analog data on
node "a_out" by node bridge instance "abridge3".

The resulting analog waveform is then passed through an op-amp-based low-pass analog filter
constructed around subcircuit "xlpf" to produce the final output at analog node "lpf_out".

27.2.2 Running example C3

Now copy the file "xspice_c3.cir" from directory /examples/xspice/ into the current directory:

$ cp /examples/xspice/xspice_c3.cir xspice_c3.cir

and invoke the new simulator executable as you did in the previous examples.

$ ngspice xspice_c3.cir
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Execute the simulation with the "run" command.

ngspice 1 -> run

After a short time, the ngspice prompt should return. Results of this simulation are examined in
the manner illustrated in the previous two examples. You can use the "plot" command to plot
either analog nodes, event-driven nodes, or both. For example, you can plot the values of the
sampled-data filter input node and the analog low-pass filter output node as follows:

ngspice 2 -> plot filt_in lpf_out

The plot shown in Figure 27.2 should appear.

Figure 27.2: Nutmeg Plot of Filter Input and Output

You can also plot data from nodes inside a subcircuit. For example, to plot the data on node
"x1a" in subcircuit "xfilter", create a pathname to this node with a dot separator.

ngspice 3 -> plot xfilter.x1a
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The output from this command is shown in Figure 27.3. Note that the waveform contains
vertical segments. These segments are caused by the non-zero delays in the "real gain" models
used within the subcircuit. Each vertical segment is actually a step with a width equal to the
model delay (1e-9 seconds).

Plotting nodes internal to subcircuits works for both analog and event-driven nodes.

Figure 27.3: Nutmeg Plot of Subcircuit Internal Node

To examine data such as the closely spaced events inside the subcircuit at node "xfilter.x1a", it
is often convenient to use the "eprint" command to produce a tabular listing of events. Try this
by entering the following command:

ngspice 4 -> eprint xfilter.x1a
**** Results Data ****
Time or Step
xfilter.x1a
0.000000000e+000 0.000000e+000 1.010030000e-004 2.000000e+000
1.010040000e-004 2.562500e+000 1.210020000e-004 2.812500e+000
1.210030000e-004 4.253906e+000 1.410020000e-004 2.332031e+000
1.410030000e-004 3.283447e+000 1.610020000e-004 2.014893e+000



27.2. XSPICE ADVANCED USAGE 429

1.610030000e-004 1.469009e+000 1.810020000e-004 2.196854e+000
1.810030000e-004 1.176232e+000
...
9.610030000e-004 3.006294e-001 9.810020000e-004 2.304755e+000
9.810030000e-004 9.506230e-001 9.810090000e-004 -3.049377e+000
9.810100000e-004 -4.174377e+000
**** Messages ****
**** Statistics ****
Operating point analog/event alternations: 1
Operating point load calls: 37
Operating point event passes: 2
Transient analysis load calls: 4299
Transient analysis timestep backups: 87

This command produces a tabular listing of event-times in the first column and node values in
the second column. The 1 ns delays can be clearly seen in the fifth decimal place of the event
times.

Note that the eprint command also gives statistics from the event-driven algorithm portion of
XSPICE. For this example, the simulator alternated between the analog solution algorithm and
the event-driven algorithm one time while performing the initial DC operating point solution
prior to the start of the transient analysis. During this operating point analysis, 37 total calls were
made to event-driven code model functions, and two separate event passes or iterations were
required before the event nodes obtained stable values. Once the transient analysis commenced,
there were 4299 total calls to event-driven code model functions. Lastly, the analog simulation
algorithm performed 87 time-step backups that forced the event-driven simulator to backup its
state data and its event queues.

A similar output is obtained when printing the values of digital nodes. For example, print the
values of the node "div8 out" as follows:

ngspice 5 -> eprint div8_out
**** Results Data ****
Time or Step
div8_out
0.000000000e+000 1s
1.810070000e-004 0s
2.610070000e-004 1s
...
9.010070000e-004 1s
9.810070000e-004 0s
**** Messages ****
**** Statistics ****
Operating point analog/event alternations: 1
Operating point load calls: 37
Operating point event passes: 2
Transient analysis load calls: 4299
Transient analysis timestep backups: 87
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From this printout, we see that digital node values are composed of a two character string. The
first character (0, 1, or U) gives the state of the node (logic zero, logic one, or unknown logic
state). The second character (s, r, z, u) gives the "strength" of the logic state (strong, resistive,
hi-impedance, or undetermined).

If you wish, examine other nodes in this circuit with either the plot or eprint commands. When
you are done, enter the "quit" command to exit the simulator and return to the operating system
prompt:

ngspice 6 -> quit

So long.
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Code Models and User-Defined Nodes

The following sections explain the steps required to create code models and User-Defined Nodes
(UDNs), store them in shared libraries and load them into the simulator at runtime. The ngspice
simulator already includes XSPICE libraries of predefined models and node types that span the
analog and digital domains. These have been detailed earlier in this document (see Sections
12.2, 12.3, and 12.4). However, the real power of the XSPICE is in its support for extending
these libraries with new models written by users. ngspice includes an XSPICE code model
generator. Adding code models to ngspice will require a model definition plus some simple file
operations, which are explained in this chapter.

The original manual cited an XSPICE “Code Model Toolkit” that enabled one to define new
models and node data types to be passed between them offline, independent from ngspice.
Whereas this Toolkit is still available in the original source code distribution at the XSPICE
web page, it is neither required nor supported any more.

So we make use of the existing XSPICE infrastructure provided with ngspice to create new
code models. With an ’intelligent’ copy and paste, and the many available code models serving
as a guide you will be quickly able to create your own models. You have to have a compiler
(gcc) available under LINUX, MS Windows (Cygwin, MINGW), maybe also for other OSs,
including supporting software (Flex, Bison, and the autotools if you start from Git sources).
The compilation procedures for ngspice are described in detail in chapter 32. Adding a code
model may then require defining the functionality , interface, and eventually user defined nodes.
Compiling into a shared library is only a simple ’make’, loading the shared lib(s) into ngspice is
done by the ngspice command codemodel... (see chapt. 17.5.11). This will allow you to either
add some code model to an existing library, or you may generate a new library with your own
code models. The latter is of interest if you want to distribute your code models independently
from the ngspice sources or executables.

These new code models are handled by ngspice in a manner analogous to its treating of SPICE
devices and XSPICE Predefined Code Models. The basic steps required to create sources for
new code models or User-Defined Nodes, compile them and load them into ngspice are similar.
They consist of 1) creating the code model or UserDefined Node (UDN) directory and its asso-
ciated model or data files, 2) inform ngspice about which code model or UDN directories have
to be compiled and linked into ngspice, 3) compile them into a shared lib, and 4) load them
into the ngspice simulator upon runtime. All code models finally reside in dynamically linkable
shared libraries (*.cm), which in fact are .so files under LINUX or dlls under MS Windows.
Currently we have 5 of them (analog.cm, digital.cm, spice2poly.cm, xtradev.cm, xtraevt.cm).

431

http://users.ece.gatech.edu/~mrichard/Xspice/
http://users.ece.gatech.edu/~mrichard/Xspice/


432 CHAPTER 28. CODE MODELS AND USER-DEFINED NODES

Upon start up of ngspice they are dynamically loaded into the simulator by the ngspice code-
model command (which is located in file .spinit (see chapt. 16.5) for the standard code models).
Once you have added your new code model into one of these libraries (or have created a new
library file, e.g. my-own.cm), instances of the model can be placed into any simulator deck
that describes a circuit of interest and simulated along with all of the other components in that
circuit.

A quick entry to get a new code model has already been presented in chapter 26.3. You may
find the details of the XSPICE language in chapters 28.6 ff.

28.1 Code Model Data Type Definitions

There are three data types which you can incorporate into a model and which have already
been used extensively in the code model library included with the simulator. These are detailed
below:

Boolean_t The Boolean type is an enumerated type which can take on values of FALSE
(integer value 0) or TRUE (integer value 1). Alternative names for these enumerations are MIF
FALSE and MIF TRUE, respectively.

Complex_t The Complex type is a structure composed of two double values. The first of
these is the .real type, and the second is the .imag type. Typically these values are accessed as
shown:

For complex value “data”, the real portion is “data.real”, and the imaginary portion is “data.imag”.

Digital_State_t The Digital State type is an enumerated value which can be either ZERO
(integer value 0), ONE (integer value 1), or UNKNOWN (integer value 2).

Digital_Strength_t The Digital Strength type is an enumerated value which can be either
STRONG (integer value 0), RESISTIVE (integer value 1), HI IMPEDANCE (integer value 2)
or UNDETERMINED (integer value 3).

Digital_t The Digital type is a composite of the Digital_State_t and Digital_Strength_t enu-
merated data types. The actual variable names within the Digital type are .state and .strength
and are accessed as shown below:

For Digital_t value “data”, the state portion is “data.state”, and the strength portion is “data.strength”.

28.2 Creating Code Models

The following description deals with extending one of the five existing code model libraries.
Adding a new library is described in chapter 28.4. The first step in creating a new code model
within XSPICE is to create a model directory inside of the selected library directory. The new
directory name is the name of the new code model. As an example you may add a directory
d_counter to the library directory digital.
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cd ngspice/src/xspice/icm/digital
mkdir d_counter

Into this new directory you copy the following template files:

• Interface Specification File (ifspec.ifs)

• Model Definition File (cfunc.mod)

You may choose any of the existing files which are similar to the new code model you intend
to integrate. The template Interface Specification File (ifspec.ifs) is edited to define the model’s
inputs, outputs, parameters, etc (see chapt. 28.6). You then edit the template Model Definition
File (cfunc.mod) to include the C-language source code that defines the model behavior (see
chapt. 28.7). As a final step you have to notify ngspice of the new code model. You have to edit
the file modpath.lst which resides in the library directory ngspice/src/xspice/icm/digital. Just
add the entry d_counter to this file.

The Interface Specification File is a text file that describes, in a tabular format, information
needed for the code model to be properly interpreted by the simulator when it is placed with
other circuit components into a SPICE deck. This information includes such things as the
parameter names, parameter default values, and the name of the model itself. The specific
format presented to you in the Interface Specification File template must be followed exactly,
but is quite straightforward. A detailed description of the required syntax, along with numerous
examples, is included in Section 28.6.

The Model Definition File contains a C programming language function definition. This func-
tion specifies the operations to be performed within the model on the data passed to it by the
simulator. Special macros are provided that allow the function to retrieve input data and return
output data. Similarly, macros are provided to allow for such things as storage of information
between iteration time-points and sending of error messages. Section 28.7 describes the form
and function of the Model Definition File in detail and lists the support macros provided within
the simulator for use in code models.

To allow compiling and linking (see chapt. 28.5) you have at least to adapt the names of the
functions inside of the two copied files to get unique function and model names. If for example
you have chosen ifspec.ifs and cfunc.mod from model d_fdiv as your template, simply replace
all entries d_fdiv by d_counter inside of the two files.

28.3 Creating User-Defined Nodes

In addition to providing the capability of adding new models to the simulator, a facility exists
which allows node types other than those found in standard SPICE to be created. Models
may be constructed which pass information back and forth via these nodes. Such models are
constructed in the manner described in the previous sections, with appropriate changes to the
Interface Specification and Model Definition Files.

Because of the need of electrical engineers to have ready access to both digital and analog
simulation capabilities, the “digital” node type is provided as a built-in node type along with
standard SPICE analog nodes. For “digital” nodes, extensive support is provided in the form
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of macros and functions so that you can treat this node type as a standard type analogous to
standard SPICE analog nodes when creating and using code models. In addition to “analog”
and “digital” nodes, the node types “real” and “int” are also provided with the simulator. These
were created using the User-Defined Node (UDN) creation facilities described below and may
serve as a template for further node types.

The first step in creating a new node type within XSPICE is to set up a node type directory
along with the appropriate template files needed.

cd ngspice/src/xspice/icm/xtraevt
mkdir <directory name>

<directory name> should be the name of the new type to be defined. Copy file udnfunc.c from
/icm/xtraevt/int into the new directory. Edit this file according to the new type you want to
create.

Notify ngspice about this new UDN directory by editing
ngspice/src/xspice/icm/xtraevt/udnpath.lst. Add a new line containing <directory name>. For
compiling and linking see chapt. 28.5.

The UDN Definition File contains a set of C language functions. These functions perform
operations such as allocating space for data structures, initializing them, and comparing them to
each other. Section 28.8 describes the form and function of the User-Defined Node Definition
File in detail and includes an example UDN Definition File.

28.4 Adding a new code model library

A group of code models may be assembled into a library. A new library is a means to distribute
new code models, independently from the existing ones. This is the way to generate a new code
model library:

cd ngspice/src/xspice/icm/
mkdir <directory name>

<directory name> is the name of the new library. Copy empty files modpath.lst and udnpath.lst
into this directory.

Edit file ngspice/src/xspice/icm/GNUmakefile.in, add <directory name> to the end of line 10,
which starts with CMDIRS = ... .

That’s all you have to do about a new library! Of course it is empty right now, so you have to
define at least one code model according to the procedure described in chapt. 28.2.

28.5 Compiling and loading the new code model (library)

Compiling is now as simple as issuing the commands
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cd ngspice/release
make
sudo make install

if you have installed ngspice according to chapter 32.1.4. This procedure will install the code
model libraries into a directory <prefix>/lib/spice/, e.g. C:/Spice/lib/spice/ for standard Win-
dows install or /usr/local/lib/spice/ for LINUX.

Thus the code model libraries are not linked into ngspice at compile time, but may be loaded at
runtime using the codemodel command (see chapt. 17.5.11). This is done automatically for the
predefined code model libraries upon starting ngspice. The appropriate commands are provided
in the start up file spinit (see chapt. 16.5). So if you have added a new code model inside of one
of the existing libraries, nothing has to be done, you will have immediate access to your new
model.

If you have generated a new code model library, e.g. new_lib.cm, then you have to add the line

@XSPICEINIT@ codemodel @prefix@/@libname@/spice/new_lib.cm

to spinit.in in ngspice/src. This will create a new spinit if ngspice is recompiled from scratch.

To avoid the need for recompilation of ngspice, you also may directly edit the file spinit by
adding the line

codemodel C:/Spice/lib/spice/new_lib.cm

(OS MS Windows) or the appropriate LINUX equivalent. Upon starting ngspice, the new library
will be loaded and you have access to the new code model(s). The codemodel command has to
be executed upon start-up of ngspice, so that the model information is available as soon as the
circuit is parsed. Failing to do so will lead to an error message of a model missing. So spinit
(or .spiceinit for personal code model libraries) is the correct place for codemodel.

28.6 Interface Specification File

The Interface Specification (IFS) file is a text file that describes the model’s naming informa-
tion, its expected input and output ports, its expected parameters, and any variables within the
model that are to be used for storage of data across an entire simulation. These four types
of data are described to the simulator in IFS file sections labeled NAME TABLE, PORT TA-
BLE, PARAMETER TABLE and STATIC VAR TABLE, respectively. An example IFS file is
given below. The example is followed by detailed descriptions of each of the entries, what they
signify, and what values are acceptable for them. Keywords are case insensitive.

NAME_TABLE:
C_Function_Name: ucm_xfer
Spice_Model_Name: xfer
Description: "arbitrary transfer function"
PORT_TABLE:
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Port_Name: in out
Description: "input" "output"
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no
PARAMETER_TABLE:
Parameter_Name: in_offset gain
Description: "input offset" "gain"
Data_Type: real real
Default_Value: 0.0 1.0
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes
PARAMETER_TABLE:
Parameter_Name: num_coeff
Description: "numerator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: den_coeff
Description: "denominator polynomial coefficients"
Data_Type: real
Default_Value: -
Limits: -
Vector: yes
Vector_Bounds: [1 -]
Null_Allowed: no
PARAMETER_TABLE:
Parameter_Name: int_ic
Description: "integrator stage initial conditions"
Data_Type: real
Default_Value: 0.0
Limits: -
Vector: yes
Vector_Bounds: den_coeff
Null_Allowed: yes
STATIC_VAR_TABLE:
Static_Var_Name: x
Data_Type: pointer
Description: "x-coefficient array"
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28.6.1 The Name Table

The name table is introduced by the “Name_Table:” keyword. It defines the code model’s C
function name, the name used on a .MODEL card, and an optional textual description. The
following sections define the valid fields that may be specified in the Name Table.

28.6.1.1 C Function Name

The C function name is a valid C identifier which is the name of the function for the code
model. It is introduced by the “C_Function_Name:” keyword followed by a valid C identifier.
To reduce the chance of name conflicts, it is recommended that user-written code model names
use the prefix “ucm_” for this entry. Thus, in the example given above, the model name is “xfer”,
but the C function is “ucm_xfer”. Note that when you subsequently write the model function in
the Model Definition File, this name must agree with that of the function (i.e., “ucm_xfer”), or
an error will result in the linking step.

28.6.1.2 SPICE Model Name

The SPICE model name is a valid SPICE identifier that will be used on SPICE .MODEL cards
to refer to this code model. It may or may not be the same as the C function name. It is
introduced by the “Spice_Model_Name:” keyword followed by a valid SPICE identifier.

Description The description string is used to describe the purpose and function of the code
model. It is introduced by the “Description:” keyword followed by a C string literal.

28.6.2 The Port Table

The port table is introduced by the “Port_Table:” keyword. It defines the set of valid ports
available to the code model. The following sections define the valid fields that may be specified
in the port table.

28.6.2.1 Port Name

The port name is a valid SPICE identifier. It is introduced by the “Port_Name:” keyword
followed by the name of the port. Note that this port name will be used to obtain and return
input and output values within the model function. This will be discussed in more detail in the
next section.

28.6.2.2 Description

The description string is used to describe the purpose and function of the code model. It is
introduced by the “Description:” keyword followed by a C string literal.
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Default Types
Type Description Valid Directions

d digital in or out
g conductance (VCCS) inout

gd differential conductance (VCCS) inout
h resistance (CCVS) inout

hd differential resistance (CCVS) inout
i current in or out

id differential current in or out
v voltage in or out

vd differential voltage in or out
<identifier> user-defined type in or out

Table 28.1: Port Types

28.6.2.3 Direction

The direction of a port specifies the data flow direction through the port. A direction must be
one of “in”, “out”, or “inout”. It is introduced by the “Direction:” keyword followed by a valid
direction value.

28.6.2.4 Default Type

The Default_Type field specifies the type of a port. These types are identical to those used to
define the port types on a SPICE deck instance card (see Table 12.1), but without the percent
sign (%) preceding them. Table 28.1 summarizes the allowable types.

28.6.2.5 Allowed Types

A port must specify the types it is allowed to assume. An allowed type value must be a list of
type names (a blank or comma separated list of names delimited by square brackets, e.g. “[v vd
i id]” or “[d]”). The type names must be taken from those listed in Table 28.1.

28.6.2.6 Vector

A port which is a vector can be thought of as a bus. The Vector field is introduced with the
“Vector:” keyword followed by a Boolean value: “YES”, “TRUE”, “NO” or “FALSE”.

The values “YES” and “TRUE” are equivalent and specify that this port is a vector. Likewise,
“NO” and “FALSE” specify that the port is not a vector. Vector ports must have a corresponding
vector bounds field that specifies valid sizes of the vector port.

28.6.2.7 Vector Bounds

If a port is a vector, limits on its size must be specified in the vector bounds field. The Vector
Bounds field specifies the upper and lower bounds on the size of a vector. The Vector Bounds
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field is usually introduced by the “Vector_Bounds:” keyword followed by a range of integers
(e.g. “[1 7]” or “[3, 20]”). The lower bound of the vector specifies the minimum number of
elements in the vector; the upper bound specifies the maximum number of elements. If the range
is unconstrained, or the associated port is not a vector, the vector bounds may be specified by
a hyphen (“-”). Using the hyphen convention, partial constraints on the vector bound may be
defined (e.g., “[2, -]” indicates that the least number of port elements allowed is two, but there
is no maximum number).

28.6.2.8 Null Allowed

In some cases, it is desirable to permit a port to remain unconnected to any electrical node in a
circuit. The Null_Allowed field specifies whether this constitutes an error for a particular port.
The Null_Allowed field is introduced by the “Null_Allowed:” keyword and is followed by a
boolean constant: “YES”, “TRUE”, “NO” or “FALSE”. The values “YES” and “TRUE” are
equivalent and specify that it is legal to leave this port unconnected. “NO” or “FALSE” specify
that the port must be connected.

28.6.3 The Parameter Table

The parameter table is introduced by the “Parameter_Table:” keyword. It defines the set of
valid parameters available to the code model. The following sections define the valid fields that
may be specified in the parameter table.

28.6.3.1 Parameter Name

The parameter name is a valid SPICE identifier which will be used on SPICE .MODEL cards
to refer to this parameter. It is introduced by the “Parameter_Name:” keyword followed by a
valid SPICE identifier.

28.6.3.2 Description

The description string is used to describe the purpose and function of the parameter. It is
introduced by the “Description:” keyword followed by a string literal.

28.6.3.3 Data Type

The parameter’s data type is specified by the Data Type field. The Data Type field is introduced
by the keyword “Data_Type:” and is followed by a valid data type. Valid data types include
boolean, complex, int, real, and string.

28.6.3.4 Null Allowed

The Null_Allowed field is introduced by the “Null_Allowed:” keyword and is followed by a
boolean literal. A value of “TRUE” or “YES” specify that it is valid for the corresponding
SPICE .MODEL card to omit a value for this parameter. If the parameter is omitted, the default
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value is used. If there is no default value, an undefined value is passed to the code model, and
the PARAM_NULL( ) macro will return a value of “TRUE” so that defaulting can be handled
within the model itself. If the value of Null_Allowed is “FALSE” or “NO”, then the simulator
will flag an error if the SPICE .MODEL card omits a value for this parameter.

28.6.3.5 Default Value

If the Null_Allowed field specifies “TRUE” for this parameter, then a default value may be
specified. This value is supplied for the parameter in the event that the SPICE .MODEL card
does not supply a value for the parameter. The default value must be of the correct type. The De-
fault Value field is introduced by the “Default_Value:” keyword and is followed by a numeric,
boolean, complex, or string literal, as appropriate.

28.6.3.6 Limits

Integer and real parameters may be constrained to accept a limited range of values. The follow-
ing range syntax is used whenever such a range of values is required. A range is specified by a
square bracket followed by a value representing a lower bound separated by space from another
value representing an upper bound and terminated with a closing square bracket (e.g.”[0 10]”).
The lower and upper bounds are inclusive. Either the lower or the upper bound may be replaced
by a hyphen (“-”) to indicate that the bound is unconstrained (e.g. “[10 -]” is read as “the range
of values greater than or equal to 10”). For a totally unconstrained range, a single hyphen with
no surrounding brackets may be used. The parameter value limit is introduced by the “Limits:”
keyword and is followed by a range.

28.6.3.7 Vector

The Vector field is used to specify whether a parameter is a vector or a scalar. Like the PORT
TABLE Vector field, it is introduced by the “Vector:” keyword and followed by a boolean value.
“TRUE” or “YES” specify that the parameter is a vector. “FALSE” or “NO” specify that it is a
scalar.

28.6.3.8 Vector Bounds

The valid sizes for a vector parameter are specified in the same manner as are port sizes (see
Section 28.6.2.7). However, in place of using a numeric range to specify valid vector bounds it
is also possible to specify the name of a port. When a parameter’s vector bounds are specified
in this way, the size of the vector parameter must be the same as the associated vector port.

28.6.4 Static Variable Table

The Static Variable table is introduced by the “Static_Var_Table:” keyword. It defines the set of
valid static variables available to the code model. These are variables whose values are retained
between successive invocations of the code model by the simulator. The following sections
define the valid fields that may be specified in the Static Variable Table.
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28.6.4.1 Name

The Static variable name is a valid C identifier that will be used in the code model to refer to
this static variable. It is introduced by the “Static_Var_Name:” keyword followed by a valid C
identifier.

28.6.4.2 Description

The description string is used to describe the purpose and function of the static variable. It is
introduced by the “Description:” keyword followed by a string literal.

28.6.4.3 Data Type

The static variable’s data type is specified by the Data Type field. The Data Type field is in-
troduced by the keyword “Data_Type:” and is followed by a valid data type. Valid data types
include boolean, complex, int, real, string and pointer.

Note that pointer types are used to specify vector values; in such cases, the allocation of memory
for vectors must be handled by the code model through the use of the malloc() or calloc() C
function. Such allocation must only occur during the initialization cycle of the model (which
is identified in the code model by testing the INIT macro for a value of TRUE). Otherwise,
memory will be unnecessarily allocated each time the model is called.

Following is an example of the method used to allocate memory to be referenced by a static
pointer variable “x” and subsequently use the allocated memory. The example assumes that the
value of “size” is at least 2, else an error would result. The references to STATIC_VAR(x) that
appear in the example illustrate how to set the value of, and then access, a static variable named
“x”. In order to use the variable “x” in this manner, it must be declared in the Static Variable
Table of the code model’s Interface Specification File.

/* Define local pointer variable */
double *local.x;

/* Allocate storage to be referenced by the static variable x. */
/* Do this only if this is the initial call of the code model. */
if (INIT == TRUE) {

STATIC_VAR(x) = calloc(size , sizeof(double ));
}

/* Assign the value from the static pointer value to the local */
/* pointer variable. */
local_x = STATIC_VAR(x);

/* Assign values to first two members of the array */
local_x [0] = 1.234;
local_x [1] = 5.678;
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28.7 Model Definition File

The Model Definition File is a C source code file that defines a code model’s behavior given
input values which are passed to it by the simulator. The file itself is always given the name
“cfunc.mod”. In order to allow for maximum flexibility, passing of input, output, and simulator-
specific information is handled through accessor macros, which are described below. In addi-
tion, certain predefined library functions (e.g. smoothing interpolators, complex arithmetic rou-
tines) are included in the simulator in order to ease the burden of the code model programmer.
These are also described below.

28.7.1 Macros

The use of the accessor macros is illustrated in the following example. Note that the argument
to most accessor macros is the name of a parameter or port as defined in the Interface Specifi-
cation File. Note also that all accessor macros except “ARGS” resolve to an lvalue (C language
terminology for something that can be assigned a value). Accessor macros do not implement
expressions or assignments.

void code.model(ARGS) /* private structure accessed by
accessor macros

*/
{
/* The following code fragments are intended to show how

information in the argument list is accessed. The reader
should not attempt to relate one fragment to another.
Consider each fragment as a separate example.

*/

double p,/* variable for use in the following code fragments */
x, /* variable for use in the following code fragments */
y; /* variable for use in the following code fragments */

int i, /* indexing variable for use in the following */
j; /* indexing variable for use in the following */

UDN_Example_Type *a_ptr , /* A pointer used to access a
User -Defined Node type */

*y_ptr; /* A pointer used to access a
User -Defined Node type */

/* Initializing and outputting a User -Defined Node result */
if(INIT) {

OUTPUT(y) = malloc(sizeof(user.defined.struct ));
y_ptr = OUTPUT(y);
y_ptr ->component1 = 0.0;
y_ptr ->component2 = 0.0;
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}
else {

y_ptr = OUTPUT(y);
y_ptr ->component1 = x1;
y_ptr ->component2 = x2;

}

/* Determining analysis type */
if(ANALYSIS == AC) {

/* Perform AC analysis -dependent operations here */
}

/* Accessing a parameter value from the .model card */
p = PARAM(gain);

/* Accessing a vector parameter from the .model card */
for(i = 0; i < PARAM_SIZE(in_offset ); i++)

p = PARAM(in_offset[i]);

/* Accessing the value of a simple real -valued input */
x = INPUT(a);

/* Accessing a vector input and checking for null port */
if( ! PORT_NULL(a))

for(i = 0; i < PORT_SIZE(a); i++)
x = INPUT(a[i]);

/* Accessing a digital input */
x = INPUT(a);

/* Accessing the value of a User -Defined Node input ...
*/

/* This node type includes two elements in its definition. */
a_ptr = INPUT(a);
x = a_ptr ->component1;
y = a_ptr ->component2;

/* Outputting a simple real -valued result */
OUTPUT(out1) = 0.0;

/* Outputting a vector result and checking for null */
if( ! PORT_NULL(a))

for(i = 0; i < PORT.SIZE(a); i++)
OUTPUT(a[i]) = 0.0;

/* Outputting the partial of output out1 w.r.t. input a */
PARTIAL(out1 ,a) = PARAM(gain);
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/* Outputting the partial of output out2(i) w.r.t. input b(j) */
for(i = 0; i < PORT_SIZE(out2); i++) {

for(j = 0; j < PORT_SIZE(b); j++) {
PARTIAL(out2[i],b[j]) = 0.0;

}
}

/* Outputting gain from input c to output out3 in an
AC analysis */

complex_gain_real = 1.0;
complex_gain_imag = 0.0;
AC_GAIN(out3 ,c) = complex_gain;

/* Outputting a digital result */
OUTPUT_STATE(out4) = ONE;

/* Outputting the delay for a digital or user -defined output */
OUTPUT_DELAY(out5) = 1.0e-9;

}

28.7.1.1 Macro Definitions

The full set of accessor macros is listed below. Arguments shown in parenthesis are examples
only. Explanations of the accessor macros are provided in the subsections below.

Circuit Data:
ARGS
CALL_TYPE
INIT
ANALYSIS
FIRST_TIMEPOINT
TIME
T(n)
RAD_FREQ
TEMPERATURE

Parameter Data:
PARAM(gain)
PARAM_SIZE(gain)
PARAM_NULL(gain)

Port Data:
PORT_SIZE(a)
PORT_NULL(a)
LOAD(a)
TOTAL_LOAD(a)

Input Data:
INPUT(a)
INPUT_STATE(a)
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INPUT_STRENGTH(a)
Output Data:

OUTPUT(y)
OUTPUT_CHANGED(a)
OUTPUT_DELAY(y)
OUTPUT_STATE(a)
OUTPUT_STRENGTH(a)

Partial Derivatives:
PARTIAL(y,a)

AC Gains:
AC_GAIN(y,a)

Static Variable:
STATIC_VAR(x)

28.7.1.2 Circuit Data

ARGS
CALL_TYPE
INIT
ANALYSIS
FIRST_TIMEPOINT
TIME
T(n)
RAD_FREQ
TEMPERATURE

ARGS is a macro which is passed in the argument list of every code model. It is there to
provide a way of referencing each model to all of the remaining macro values. It must
be present in the argument list of every code model; it must also be the only argument
present in the argument list of every code model.

CALL_TYPE is a macro which returns one of two possible symbolic constants. These are
EVENT and ANALOG. Testing may be performed by a model using CALL TYPE to
determine whether it is being called by the analog simulator or the event-driven simulator.
This will, in general, only be of value to a hybrid model such as the adc bridge or the dac
bridge.

INIT is an integer (int) that takes the value 1 or 0 depending on whether this is the first call to
the code model instance or not, respectively.

ANALYSIS is an enumerated integer that takes values of DC, AC, or TRANSIENT.

FIRST TIMEPOINT is an integer that takes the value 1 or 0 depending on whether this is the
first call for this instance at the current analysis step (i.e., time-point) or not, respectively.

TIME is a double representing the current analysis time in a transient analysis. T(n) is a double
vector giving the analysis time for a specified time-point in a transient analysis, where n
takes the value 0 or 1. T(0) is equal to TIME. T(1) is the last accepted time-point. (T(0) -
T(1)) is the time-step (i.e., the delta-time value) associated with the current time.
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RAD_FREQ is a double representing the current analysis frequency in an AC analysis ex-
pressed in units of radians per second.

TEMPERATURE is a double representing the current analysis temperature.

28.7.1.3 Parameter Data

PARAM(gain)
PARAM_SIZE(gain)
PARAM_NULL(gain)

PARAM(gain) resolves to the value of the scalar (i.e., non-vector) parameter “gain” which
was defined in the Interface Specification File tables. The type of “gain” is the type given
in the ifspec.ifs file. The same accessor macro can be used regardless of type. If “gain” is
a string, then PARAM(gain) would resolve to a pointer. PARAM(gain[n]) resolves to the
value of the nth element of a vector parameter “gain”.

PARAM_SIZE(gain) resolves to an integer (int) representing the size of the “gain” vector
(which was dynamically determined when the SPICE deck was read). PARAM_SIZE(gain)
is undefined if gain is a scalar.

PARAM_NULL(gain) resolves to an integer with value 0 or 1 depending on whether a value
was specified for gain, or whether the value is defaulted, respectively.

28.7.1.4 Port Data

PORT_SIZE(a)
PORT_NULL(a)
LOAD(a)
TOTAL_LOAD(a)

PORT_SIZE(a) resolves to an integer (int) representing the size of the “a” port (which was
dynamically determined when the SPICE deck was read). PORT_SIZE(a) is undefined if
gain is a scalar.

PORT_NULL(a) resolves to an integer (int) with value 0 or 1 depending on whether the SPICE
deck has a node specified for this port, or has specified that the port is null, respectively.

LOAD(a) is used in a digital model to post a capacitive load value to a particular input or output
port during the INIT pass of the simulator. All values posted for a particular event-driven
node using the LOAD() macro are summed, producing a total load value which

TOTAL_LOAD(a) returns a double value which represents the total capacitive load seen on
a specified node to which a digital code model is connected. This information may be
used after the INIT pass by the code model to modify the delays it posts with its output
states and strengths. Note that this macro can also be used by non-digital event-driven
code models (see LOAD(), above).
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28.7.1.5 Input Data

INPUT(a)
INPUT_STATE(a)
INPUT_STRENGTH(a)

INPUT(a) resolves to the value of the scalar input “a” that was defined in the Interface Spec-
ification File tables (“a” can be either a scalar port or a port value from a vector; in the
latter case, the notation used would be “a[i]”, where “i” is the index value for the port).
The type of “a” is the type given in the ifspec.ifs file. The same accessor macro can be
used regardless of type.

INPUT_STATE(a) resolves to the state value defined for digital node types. These will be one
of the symbolic constants ZERO, ONE, or UNKNOWN.

INPUT_STRENGTH(a) resolves to the strength with which a digital input node is being
driven. This is determined by a resolution algorithm which looks at all outputs to a node
and determines its final driven strength. This value in turn is passed to a code model when
requested by this macro. Possible strength values are:
1. STRONG
2. RESISTIVE
3. HI_IMPEDANCE
4. UNDETERMINED

28.7.1.6 Output Data

OUTPUT(y)
OUTPUT_CHANGED(a)
OUTPUT_DELAY(y)
OUTPUT_STATE(a)
OUTPUT_STRENGTH(a)

OUTPUT(y) resolves to the value of the scalar output “y” that was defined in the Interface
Specification File tables. The type of “y” is the type given in the ifspec.ifs file. The same
accessor macro can be used regardless of type. If “y” is a vector, then OUTPUT(y) would
resolve to a pointer.

OUTPUT_CHANGED(a) may be assigned one of two values for any particular output from
a digital code model. If assigned the value TRUE (the default), then an output state,
strength and delay must be posted by the model during the call. If, on the other hand, no
change has occurred during that pass, the OUTPUT_CHANGED(a) value for an output
can be set to FALSE. In this case, no state, strength or delay values need subsequently
be posted by the model. Remember that this macro applies to a single output port. If a
model has multiple outputs that have not changed, OUTPUT_CHANGED(a) must be set
to FALSE for each of them.

OUTPUT_DELAY(y) may be assigned a double value representing a delay associated with
a particular digital or User-Defined Node output port. Note that this macro must be set
for each digital or User-Defined Node output from a model during each pass, unless the
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OUTPUT_CHANGED(a) macro is invoked (see above). Note also that a non-zero value
must be assigned to OUTPUT_DELAY(). Assigning a value of zero (or a negative value)
will cause an error.

OUTPUT_STATE(a) may be assigned a state value for a digital output node. Valid values are
ZERO, ONE, and UNKNOWN. This is the normal way of posting an output state from a
digital code model.

OUTPUT_STRENGTH(a) may be assigned a strength value for a digital output node. This
is the normal way of posting an output strength from a digital code model. Valid values
are:
1. STRONG
2. RESISTIVE
3. HI_IMPEDANCE
4. UNDETERMINED

28.7.1.7 Partial Derivatives

PARTIAL(y,a)
PARTIAL(y[n],a)
PARTIAL(y,a[m])
PARTIAL(y[n],a[m])

PARTIAL(y,a) resolves to the value of the partial derivative of scalar output “y” with respect
to scalar input “a”. The type is always double since partial derivatives are only defined
for nodes with real valued quantities (i.e., analog nodes).

The remaining uses of PARTIAL are shown for the cases in which either the output, the input,
or both are vectors.

Partial derivatives are required by the simulator to allow it to solve the non-linear equations
that describe circuit behavior for analog nodes. Since coding of partial derivatives can become
difficult and error-prone for complex analog models, you may wish to consider using the cm
analog auto partial() code model support function instead of using this macro.

28.7.1.8 AC Gains

AC_GAIN(y,a)
AC_GAIN(y[n],a)
AC_GAIN(y,a[m])
AC_GAIN(y[n],a[m])

AC_GAIN(y,a) resolves to the value of the AC analysis gain of scalar output “y” from scalar
input “a”. The type is always a structure (“Complex_t”) defined in the standard code
model header file:

typedef struct Complex_s {
double real; /* The real part of the complex number */
double imag; /* The imaginary part of the complex number */
}Complex_t;
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The remaining uses of AC_GAIN are shown for the cases in which either the output, the input,
or both are vectors.

28.7.1.9 Static Variables

STATIC_VAR(x)

STATIC_VAR(x) resolves to an lvalue or a pointer which is assigned the value of some scalar
code model result or state defined in the Interface Spec File tables, or a pointer to a value
or a vector of values. The type of “x” is the type given in the Interface Specification
File. The same accessor macro can be used regardless of type since it simply resolves
to an lvalue. If “x” is a vector, then STATIC_VAR(x) would resolve to a pointer. In this
case, the code model is responsible for allocating storage for the vector and assigning the
pointer to the allocated storage to STATIC_VAR(x).

28.7.1.10 Accessor Macros

Table 28.3 describes the accessor macros available to the Model Definition File programmer and
their C types. The PARAM and STATIC_VAR macros, whose types are labeled CD (context
dependent), return the type defined in the Interface Specification File. Arguments listed with
“[i]” take an optional square bracket delimited index if the corresponding port or parameter is a
vector. The index may be any C expression - possibly involving calls to other accessor macros
(e.g.,” OUTPUT(out[PORT_SIZE(out)-1])”)

Name Type Args Description
AC_GAIN Complex_t y[i],x[i] AC gain of output y with respect to

input x.
ANALYSIS enum <none> Type of analysis: DC, AC,

TRANSIENT.
ARGS Mif_Private_t <none> Standard argument to all code

model function.
CALL_TYPE enum <none> Type of model evaluation call:

ANALOG or EVENT.
INIT Boolean_t <none> Is this the first call to the model?
INPUT double or void* name[i] Value of analog input port, or value

of structure pointer for
User-Defined Node port.

INPUT_STATE enum name[i] State of a digital input: ZERO,
ONE, or UNKNOWN.

INPUT_STRENGHT enum name[i] Strength of digital input:
STRONG, RESISTIVE, HI
IMPEDANCE, or
UNDETERMINED.

INPUT_TYPE char* name[i] The port type of the input.
LOAD double name[i] The digital load value placed on a

port by this model.
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Table 28.3: Accessor macros

MESSAGE char* name[i] A message output by a model on
an event-driven node.

OUTPUT double or void* name[i] Value of the analog output port or
value of structure pointer for
User-Defined Node port.

OUTPUT_CHANGED Boolean_t name[i] Has a new value been assigned to
this event-driven output by the
model?

OUTPUT_DELAY double name[i] Delay in seconds for an
event-driven output.

OUTPUT_STATE enum name[i] State of a digital output: ZERO,
ONE, or UNKNOWN.

OUTPUT_STRENGTH enum name[i] Strength of digital output:
STRONG, RESISTIVE,
HI_IMPEDANCE, or
UNDETERMINED.

OUTPUT_TYPE char* name[i] The port type of the output.
PARAM CD name[i] Value of the parameter.
PARAM_NULL Boolean_t name[i] Was the parameter not included on

the SPICE .model card ?
PARAM_SIZE int name Size of parameter vector.
PARTIAL double y[i],x[i] Partial derivative of output y with

respect to input x.
PORT_NULL Mif_Boolean_t name Has this port been specified as

unconnected?
PORT_SIZE int name Size of port vector.
RAD_FREQ double <none> Current analysis frequency in

radians per second.
STATIC_VAR CD name Value of a static variable.
STATIC_VAR_SIZE int name Size of static var vector (currently

unused).
T(n) int index Current and previous analysis

times (T(0) = TIME = current
analysis time, T(1) = previous
analysis time).

TEMPERATURE double <none> Current analysis temperature.
TIME double <none> Current analysis time (same as

T(0)).
TOTAL_LOAD double name[i] The total of all loads on the node

attached to this event driven port.
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28.7.2 Function Library

28.7.2.1 Overview

Aside from the accessor macros, the simulator also provides a library of functions callable from
within code models. The header file containing prototypes to these functions is automatically
inserted into the Model Definition File for you. The complete list of available functions follows:

Smoothing Functions:
void cm_smooth_corner
void cm_smooth_discontinuity
double cm_smooth_pwl

Model State Storage Functions:
void cm_analog_alloc
void cm_event_alloc
void *cm_analog_get_ptr
void *cm_event_get_ptr

Integration and Convergence Functions:
int cm_analog_integrate
int cm_analog_converge
void cm_analog_not_converged
void cm_analog_auto_partial
double cm_analog_ramp_factor

Message Handling Functions:
char *cm_message_get_errmsg
void cm_message_send

Breakpoint Handling Functions:
int cm_analog_set_temp_bkpt
int cm_analog_set_perm_bkpt
int cm_event_queue

Special Purpose Functions:
void cm_climit_fcn
double cm_netlist_get_c
double cm_netlist_get_l

Complex Math Functions:
complex_t cm_complex_set
complex_t cm_complex_add
complex_t cm_complex_sub
complex_t cm_complex_mult
complex_t cm_complex_div

28.7.2.2 Smoothing Functions

void
cm_smooth_corner(x_input, x_center, y_center, domain,

lower_slope, upper_slope, y_output, dy_dx)

double x_input; /* The value of the x input */
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double x_center; /* The x intercept of the two slopes */
double y_center; /* The y intercept of the two slopes */
double domain; /* The smoothing domain */
double lower_slope; /* The lower slope */
double upper_slope; /* The upper slope */
double *y_output; /* The smoothed y output */
double *dy_dx; /* The partial of y wrt x */

void
cm_smooth_discontinuity(x_input, x_lower, y_lower, x_upper, y_upper

y_output, dy_dx)

double x_input; /* The x value at which to compute y */
double x_lower; /* The x value of the lower corner */
double y_lower; /* The y value of the lower corner */
double x_upper; /* The x value of the upper corner */
double y_upper; /* The y value of the upper corner */
double *y_output; /* The computed smoothed y value */
double *dy_dx; /* The partial of y wrt x */

double
cm_smooth_pwl(x_input, x, y, size, input_domain, dout_din)

double x_input; /* The x input value */
double *x; /* The vector of x values */
double *y; /* The vector of y values */
int size; /* The size of the xy vectors */
double input_domain; /* The smoothing domain */
double *dout_din; /* The partial of the output wrt the input */

cm_smooth_corner() automates smoothing between two arbitrarily-sloped lines that meet at a
single center point. You specify the center point (x_center, y_center), plus a domain (x-valued
delta) above and below x_center. This defines a smoothing region about the center point. Then,
the slopes of the meeting lines outside of this smoothing region are specified (lower_slope,
upper_slope). The function then interpolates a smoothly-varying output (*y_output) and its
derivative (*dy_dx) for the x_input value. This function helps to automate the smoothing of
piecewise-linear functions, for example. Such smoothing aids the simulator in achieving con-
vergence.

cm_smooth_discontinuity() allows you to obtain a smoothly-transitioning output (*y_output)
that varies between two static values (y_lower, y_upper) as an independent variable (x_input)
transitions between two values (x_lower, x_upper). This function is useful in interpolating
between resistances or voltage levels that change abruptly between two values.

cm_smooth_pwl() duplicates much of the functionality of the predefined pwl code model. The
cm smooth pwl() takes an input value plus x-coordinate and y-coordinate vector values along
with the total number of coordinate points used to describe the piecewise linear transfer function
and returns the interpolated or extrapolated value of the output based on that transfer function.
More detail is available by looking at the description of the pwl code model. Note that the
output value is the function’s returned value.
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28.7.2.3 Model State Storage Functions

void cm_analog_alloc(tag, size)

int tag; /* The user-specified tag for this block of memory */
int size; /* The number of bytes to allocate */

void cm_event_alloc(tag, size)

int tag; /* The user-specified tag for the memory block */
int size; /* The number of bytes to be allocated */

void *cm_analog_get_ptr(tag, timepoint)

int tag; /* The user-specified tag for this block of memory */
int timepoint; /* The timepoint of interest - 0=current 1=previous */

void *cm_event_get_ptr(tag, timepoint)

int tag; /* The user-specified tag for the memory block */
int timepoint; /* The timepoint - 0=current, 1=previous */

cm_analog_alloc() and cm_event_alloc() allow you to allocate storage space for analog and
event-driven model state information. The storage space is not static, but rather represents a
storage vector of two values which rotate with each accepted simulator time-point evaluation.
This is explained more fully below. The “tag” parameter allows you to specify an integer tag
when allocating space. This allows more than one rotational storage location per model to be
allocated. The “size” parameter specifies the size in bytes of the storage (computed by the C
language “sizeof()” operator). Both cm_analog_alloc() and cm_event_alloc() will not return
pointers to the allocated space, as has been available (and buggy) from the original XSPICE
code. cm_analog_alloc() should be used by an analog model; cm_event_alloc() should be used
by an event-driven model.

*cm_analog_get_ptr() and *cm_event_get_ptr() retrieve the pointer location of the rotational
storage space previously allocated by cm_analog_alloc() or cm_event_alloc(). Important no-
tice: These functions must be called only after all memory allocation (all calls to cm_analog_alloc()
or cm_event_alloc()) have been done. All pointers returned between calls to memory allocation
will become obsolete (point to freed memory because of an internal realloc). The functions
take the integer “tag” used to allocate the space, and an integer from 0 to 1 which specifies the
time-point with which the desired state variable is associated (e.g. timepoint = 0 will retrieve
the address of storage for the current time-point; timepoint = 1 will retrieve the address of stor-
age for the last accepted time-point). Note that once a model is exited, storage to the current
time-point state storage location (i.e., timepoint = 0) will, upon the next time-point itera-
tion, be rotated to the previous location (i.e., timepoint = 1). When rotation is done, a copy
of the old “timepoint = 0” storage value is placed in the new “timepoint = 0” storage location.
Thus, if a value does not change for a particular iteration, specific writing to “timepoint = 0”
storage is not required. These features allow a model coder to constantly know which piece of
state information is being dealt with within the model function at each time-point.
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28.7.2.4 Integration and Convergence Functions

int cm_analog_integrate(integrand, integral, partial)

double integrand; /* The integrand */
double *integral; /* The current and returned value of integral */
double *partial; /* The partial derivative of integral wrt integrand */

int cm_analog_converge(state)

double *state; /* The state to be converged */

void cm_analog_not_converged()
void cm_analog_auto_partial()

double cm_ramp_factor()

cm_analog_integrate() takes as input the integrand (the input to the integrator) and produces
as output the integral value and the partial of the integral with respect to the integrand. The
integration itself is with respect to time, and the pointer to the integral value must have been
previously allocated using cm_analog_alloc() and *cm_analog_get_ptr(). This is required be-
cause of the need for the integrate routine itself to have access to previously-computed values
of the integral.

cm_analog_converge() takes as an input the address of a state variable that was previously
allocated using cm_analog_alloc() and *cm_analog_get_ptr(). The function itself serves to
notify the simulator that for each time-step taken, that variable must be iterated upon until it
converges.

cm_analog_not_converged() is a function that can and should be called by an analog model
whenever it performs internal limiting of one or more of its inputs to aid in reaching conver-
gence. This causes the simulator to call the model again at the current time-point and continue
solving the circuit matrix. A new time-point will not be attempted until the code model re-
turns without calling the cm_analog_not_converged() function. For circuits which have trouble
reaching a converged state (often due to multiple inputs changing too quickly for the model to
react in a reasonable fashion), the use of this function is virtually mandatory.

cm_analog_auto_partial() may be called at the end of a code model function in lieu of calcu-
lating the values of partial derivatives explicitly in the function. When this function is called, no
values should be assigned to the PARTIAL macro since these values will be computed automat-
ically by the simulator. The automatic calculation of partial derivatives can save considerable
time in designing and coding a model, since manual computation of partial derivatives can be-
come very complex and error-prone for some models. However, the automatic evaluation may
also increase simulation run time significantly. Function cm_analog_auto_partial() causes the
model to be called N additional times (for a model with N inputs) with each input varied by
a small amount (1e-6 for voltage inputs and 1e-12 for current inputs). The values of the par-
tial derivatives of the outputs with respect to the inputs are then approximated by the simulator
through divided difference calculations.

cm_analog_ramp_factor() will then return a value from 0.0 to 1.0, which indicates whether
or not a ramp time value requested in the SPICE analysis deck (with the use of .option ramp-
time=<duration>) has elapsed. If the RAMPTIME option is used, then cm_analog_ramp_factor
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returns a 0.0 value during the DC operating point solution and a value which is between 0.0 and
1.0 during the ramp. A 1.0 value is returned after the ramp is over or if the RAMPTIME option
is not used. This value is intended as a multiplication factor to be used with all model outputs
which would ordinarily experience a “power-up” transition. Currently, all sources within the
simulator are automatically ramped to the "final" time-zero value if a RAMPTIME option is
specified.

28.7.2.5 Message Handling Functions

char *cm_message_get_errmsg()
int cm_message_send(char *msg)
char *msg; /* The message to output. */

*cm_message_get_errmsg() is a function designed to be used with other library functions to
provide a way for models to handle error situations. More specifically, whenever a library func-
tion which returns type “int” is executed from a model, it will return an integer value, n. If this
value is not equal to zero (0), then an error condition has occurred (likewise, functions which
return pointers will return a NULL value if an error has occurred). At that point, the model can
invoke *cm_message_get_errmsg to obtain a pointer to an error message. This can then in turn
be displayed to the user or passed to the simulator interface through the cm_message_send()
function. The C code required for this is as follows:

err = cm_analog_integrate(in, &out, &dout_din);
if (err) {

cm_message_send(cm_message_get_errmsg());
}
else { ...

cm_message_send() sends messages to either the standard output screen or to the simulator
interface, depending on which is in use.

28.7.2.6 Breakpoint Handling Functions

int cm_analog_set_perm_bkpt(time)

double time; /* The time of the breakpoint to be set */

int cm_analog_set_temp_bkpt(time)

double time; /* The time of the breakpoint to be set */

int cm_event_queue(time)

double time; /* The time of the event to be queued */

cm_analog_set_perm_bkpt() takes as input a time value. This value is posted to the analog
simulator algorithm and is used to force the simulator to choose that value as a breakpoint at
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some time in the future. The simulator may choose as the next time-point a value less than the
input, but not greater. Also, regardless of how many time-points pass before the breakpoint is
reached, it will not be removed from posting. Thus, a breakpoint is guaranteed at the passed
time value. Note that a breakpoint may also be set for a time prior to the current time, but this
will result in an error if the posted breakpoint is prior to the last accepted time (i.e., T(1)).

cm_analog_set_temp_bkpt() takes as input a time value. This value is posted to the simulator
and is used to force the simulator, for the next time-step only, to not exceed the passed time
value. The simulator may choose as the next time-point a value less than the input, but not
greater. In addition, once the next time-step is chosen, the posted value is removed regardless
of whether it caused the break at the given time-point. This function is useful in the event that
a time-point needs to be retracted after its first posting in order to recalculate a new breakpoint
based on new input data (for controlled oscillators, controlled one-shots, etc), since temporary
breakpoints automatically “go away” if not reposted each time-step. Note that a breakpoint
may also be set for a time prior to the current time, but this will result in an error if the posted
breakpoint is prior to the last accepted time (i.e., T(1)).

cm_event_queue() is similar to cm_analog_set_perm_bkpt(), but functions with event-driven
models. When invoked, this function causes the model to be queued for calling at the specified
time. All other details applicable to cm_analog_set_perm_bkpt() apply to this function as well.

28.7.2.7 Special Purpose Functions

void
cm_climit_fcn(in, in_offset, cntl_upper, cntl_lower, lower_delta, upper_delta,

limit_range, gain, fraction, out_final, pout_pin_final,
pout_pcntl_lower_final, pout_pcntl_upper_final)

double in; /* The input value */
double in-offset; /* The input offset */
double cntl_upper; /* The upper control input value */
double cntl_lower; /* The lower control input value */
double lower_delta; /* The delta from control to limit value */
double upper_delta; /* The delta from control to limit value */
double limit_range; /* The limiting range */
double gain; /* The gain from input to output */
int percent; /* The fraction vs. absolute range flag */
double *out_final; /* The output value */
double *pout_pin_final; /* The partial of output wrt input */
double *pout_pcntl_lower_final; /* The partial of output wrt lower

control input */
double *pout_pcntl_upper:final; /* The partial of output wrt upper

control input */

double cm_netlist_get_c()

double cm_netlist_get_l()

cm_climit_fcn() is a very specific function that mimics the behavior of the climit code model
(see the Predefined Models section). In brief, the cm_climit_fcn() takes as input an “in” value,
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an offset, and controlling upper and lower values. Parameter values include delta values for
the controlling inputs, a smoothing range, gain, and fraction switch values. Outputs include
the final value, plus the partial derivatives of the output with respect to signal input, and both
control inputs. These all operate identically to the similarly-named inputs and parameters of the
climit model.

The function performs a limit on the “in” value, holding it to within some delta of the controlling
inputs, and handling smoothing, etc. The cm_climit_fcn() was originally used in the ilimit code
model to handle much of the primary limiting in that model, and can be used by a code model
developer to take care of limiting in larger models that require it. See the detailed description
of the climit model for more in-depth description.

cm_netlist_get_c() and cm_netlist_get_l() functions search the analog circuitry to which their
input is connected, and total the capacitance or inductance, respectively, found at that node. The
functions, as they are currently written, assume they are called by a model which has only one
single-ended analog input port.

28.7.2.8 Complex Math Functions

Complex_t cm_complex_set (real_part, imag_part)

double real_part; /* The real part of the complex number */
double imag_part; /* The imaginary part of the complex number */

Complex_t cm_complex_add (x, y)

Complex_t x; /* The first operand of x + y */
Complex_t y; /* The second operand of x + y */

Complex_t cm_complex_sub (x, y)

Complex_t x; /* The first operand of x - y */
Complex_t y; /* The second operand of x - y */

Complex_t cm_complex_mult (x, y)

Complex_t x; /* The first operand of x * y */
Complex_t y; /* The second operand of x * y */

Complex_t cm_complex_div (x, y)

Complex_t x; /* The first operand of x / y */
Complex_t y; /* The second operand of x / y */

cm_complex_set() takes as input two doubles, and converts these to a Complex_t. The first
double is taken as the real part, and the second is taken as the imaginary part of the resulting
complex value.

cm_complex_add(), cm_complex_sub(), cm_complex_mult(), and cm_complex_div() each
take two complex values as inputs and return the result of a complex addition, subtraction,
multiplication, or division, respectively.
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28.8 User-Defined Node Definition File

The User-Defined Node Definition File (udnfunc.c) defines the C functions which implement
basic operations on user-defined nodes such as data structure creation, initialization, copying,
and comparison. Unlike the Model Definition File which uses the Code Model Preprocessor to
translate Accessor Macros, the User-Defined Node Definition file is a pure C language file. This
file uses macros to isolate you from data structure definitions, but the macros are defined in a
standard header file (EVTudn.h), and translations are performed by the standard C Preprocessor.

When you create a directory for a new User-Defined Node, e.g. /ngspice/src/xspice/icm/xtraevt/new_type/,
add a new User-Defined Node Definition File udnfunc.c (see the example in chapt. 28.8.3), and
place a structure of type ’Evt_Udn_Info_t’ at its bottom.

This structure contains the type name for the node, a description string, and pointers to each
of the functions that define the node. This structure is complete except for a text string that
describes the node type. This string is stubbed out and may be edited by you if desired.

28.8.1 Macros

Name Type Description
MALLOCED_PTR void * Assign pointer to allocated structure

to this macro
STRUCT_PTR void * A pointer to a structure of the defined

type
STRUCT_PTR_1 void * A pointer to a structure of the defined

type
STRUCT_PTR_2 void * A pointer to a structure of the defined

type
EQUAL Mif_Boolean_t Assign TRUE or FALSE to this macro

according to the results of structure
comparison

INPUT_STRUCT_PTR void * A pointer to a structure of the defined
type

OUTPUT_STRUCT_PTR void * A pointer to a structure of the defined
type

INPUT_STRUCT_PTR_ARRAY void ** An array of pointers to structures of
the defined type

INPUT_STRUCT_PTR_ARRAY_SIZE int The size of the array
STRUCT_MEMBER_ID char * A string naming some part of the

structure
PLOT_VAL double The value of the specified structure

member for plotting purposes
PRINT_VAL char * The value of the specified structure

member for printing purposes

Table 28.4: User-Defined Node Macros

You must code the functions described in the following section using the macros appropriate
for the particular function. You may elect whether not to provide the optional functions.
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It is an error to use a macro not defined for a function. Note that a review of the sample
directories for the “real” and “int” UDN types will make the function usage clearer.

The macros used in the User-Defined Node Definition File to access and assign data values
are defined in Table 28.4. The translations of the macros and of macros used in the function
argument lists are defined in the Interface Diesign Document for the XSPICE Simulator.

28.8.2 Function Library

The functions (required and optional) that define a User-Defined Node are listed below. For
optional functions not used, the pointer in the Evt_Udn_Info_t structure can be changed to
NULL.

Required functions:

create Allocate data structure used as inputs and outputs to
code models.

initialize Set structure to appropriate initial value for first use as
model input.

copy Make a copy of the contents into created but possibly
uninitialized structure.

compare Determine if two structures are equal in value.

Optional functions:

dismantle Free allocations inside structure (but not structure itself).

invert Invert logical value of structure.

resolve Determine the resultant when multiple outputs are connected
to a node.

plot_val Output a real value for specified structure component for
plotting purposes.

print_val Output a string value for specified structure component for
printing.

ipc_val Output a binary representation of the structure suitable
for sending over the IPC channel.

The required actions for each of these functions are described in the following subsections. In
each function, you have to replace the XXX with the node type name specified. The macros
used in implementing the functions are described in a later section.

http://users.ece.gatech.edu/~mrichard/Xspice/XSpice_InterfaceDesignDoc_Sep92.pdf
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28.8.2.1 Function udn_XXX_create

Allocate space for the data structure defined for the User-Defined Node to pass data between
models. Then assign pointer created by the storage allocator (e.g. malloc) to MALLOCED_PTR.

28.8.2.2 Function udn_XXX_initialize

Assign STRUCT_PTR to a pointer variable of defined type and then initialize the value of the
structure.

28.8.2.3 Function udn_XXX_compare

Assign STRUCT_PTR_1 and STRUCT_PTR_2 to pointer variables of the defined type. Com-
pare the two structures and assign either TRUE or FALSE to EQUAL.

28.8.2.4 Function udn_XXX_copy

Assign INPUT_STRUCT_PTR and OUTPUT_STRUCT_PTR to pointer variables of the de-
fined type and then copy the elements of the input structure to the output structure.

28.8.2.5 Function udn_XXX_dismantle

Assign STRUCT_PTR to a pointer variable of defined type and then free any allocated sub-
structures (but not the structure itself!). If there are no substructures, the body of this function
may be left null.

28.8.2.6 Function udn_XXX_invert

Assign STRUCT_PTR to a pointer variable of the defined type, and then invert the logical value
of the structure.

28.8.2.7 Function udn_XXX_resolve

Assign INPUT_STRUCT_PTR_ARRAY to a variable declared as an array of pointers of the
defined type - e.g.:

<type> **struct_array;
struct_array = INPUT_STRUCT_PTR_ARRAY;

Then, the number of elements in the array may be determined from the integer valued IN-
PUT_STRUCT_PTR_ARRAY_SIZE macro.

Assign OUTPUT_STRUCT_PTR to a pointer variable of the defined type. Scan through the
array of structures, compute the resolved value, and assign it into the output structure.
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28.8.2.8 Function udn_XXX_plot_val

Assign STRUCT_PTR to a pointer variable of the defined type. Then, access the member of
the structure specified by the string in STRUCT_MEMBER_ID and assign some real valued
quantity for this member to PLOT_VALUE.

28.8.2.9 Function udn_XXX_print_val

Assign STRUCT_PTR to a pointer variable of the defined type. Then, access the member of
the structure specified by the string in STRUCT_MEMBER_ID and assign some string valued
quantity for this member to PRINT_VALUE.

If the string is not static, a new string should be allocated on each call. Do not free the allocated
strings.

28.8.2.10 Function udn_XXX_ipc_val

Use STRUCT_PTR to access the value of the node data. Assign to IPC_VAL a binary repre-
sentation of the data. Typically this can be accomplished by simply assigning STRUCT_PTR
to IPC_VAL.

Assign to IPC_VAL_SIZE an integer representing the size of the binary data in bytes.

28.8.3 Example UDN Definition File

The following is an example UDN Definition File which is included with the XSPICE system. It
illustrates the definition of the functions described above for a User-Defined Node type “int” (for
“integer” node type), to be found in file /ngspice/src/xspice/icm/xtraevt/int/udnfunc.c.

#include <stdio.h>
#include "ngspice/cm.h"
#include "ngspice/evtudn.h"

void *tmalloc(size_t );
#define TMALLOC(t,n) (t*) tmalloc(sizeof(t)*( size_t )(n))

/* macro to ignore unused variables and parameters */
#define NG_IGNORE(x) (void)x

/* ************************************************* */

static void udn_int_create(CREATE_ARGS)
{

/* Malloc space for an int */
MALLOCED_PTR = TMALLOC(int , 1);

}
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/* ************************************************* */

static void udn_int_dismantle(DISMANTLE_ARGS)
{

NG_IGNORE(STRUCT_PTR );
/* Do nothing. There are no internally malloc ’ed

things to dismantle */
}

/* ************************************************* */

static void udn_int_initialize(INITIALIZE_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;

/* Initialize to zero */
*int_struct = 0;

}

/* ************************************************* */

static void udn_int_invert(INVERT_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;

/* Invert the state */
*int_struct = -(* int_struct );

}

/* ************************************************* */

static void udn_int_copy(COPY_ARGS)
{

int *int_from_struct = (int *) INPUT_STRUCT_PTR;
int *int_to_struct = (int *) OUTPUT_STRUCT_PTR;

/* Copy the structure */
*int_to_struct = *int_from_struct;

}

/* ************************************************* */

static void udn_int_resolve(RESOLVE_ARGS)
{

int ** array = (int **) INPUT_STRUCT_PTR_ARRAY;
int *out = (int *) OUTPUT_STRUCT_PTR;
int num_struct = INPUT_STRUCT_PTR_ARRAY_SIZE;
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int sum;
int i;

/* Sum the values */
for(i = 0, sum = 0; i < num_struct; i++)

sum += *(array[i]);

/* Assign the result */
*out = sum;

}

/* ************************************************* */

static void udn_int_compare(COMPARE_ARGS)
{

int *int_struct1 = (int *) STRUCT_PTR_1;
int *int_struct2 = (int *) STRUCT_PTR_2;

/* Compare the structures */
if((* int_struct1) == (* int_struct2 ))

EQUAL = TRUE;
else

EQUAL = FALSE;
}

/* ************************************************* */

static void udn_int_plot_val(PLOT_VAL_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;
NG_IGNORE(STRUCT_MEMBER_ID );

/* Output a value for the int struct */
PLOT_VAL = *int_struct;

}

/* ************************************************* */

static void udn_int_print_val(PRINT_VAL_ARGS)
{

int *int_struct = (int *) STRUCT_PTR;
NG_IGNORE(STRUCT_MEMBER_ID );

/* Allocate space for the printed value */
PRINT_VAL = TMALLOC(char , 30);

/* Print the value into the string */
sprintf(PRINT_VAL , "%8d", *int_struct );
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}

/* ************************************************* */

static void udn_int_ipc_val(IPC_VAL_ARGS)
{

/* Simply return the structure and its size */
IPC_VAL = STRUCT_PTR;
IPC_VAL_SIZE = sizeof(int);

}

Evt_Udn_Info_t udn_int_info = {
"int",
"integer valued data",

udn_int_create ,
udn_int_dismantle ,
udn_int_initialize ,
udn_int_invert ,
udn_int_copy ,
udn_int_resolve ,
udn_int_compare ,
udn_int_plot_val ,
udn_int_print_val ,
udn_int_ipc_val

};
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Error Messages

Error messages may be subdivided into three categories. These are:

1. Error messages generated during the development of a code model (Preprocessor Error
Messages).

2. Error messages generated by the simulator during a simulation run (Simulator Error Mes-
sages).

3. Error messages generated by individual code models (Code Model Error Messages).

These messages will be explained in detail in the following subsections.

29.1 Preprocessor Error Messages

The following is a list of error messages that may be encountered when invoking the directory-
creation and code modeling preprocessor tools. These are listed individually, and explanations
follow the name/listing.

Usage: cmpp [-ifs] [-mod [<filename>]] [-lst]

The Code Model Preprocessor (cmpp) command was invoked incorrectly.

ERROR - Too few arguments

The Code Model Preprocessor (cmpp) command was invoked with too few arguments.

ERROR - Too many arguments

The Code Model Preprocessor (cmpp) command was invoked with too many arguments.

ERROR - Unrecognized argument

465
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The Code Model Preprocessor (cmpp) command was invoked with an invalid argument.

ERROR - File not found: s<filename>

The specified file was not found, or could not be opened for read access.

ERROR - Line <line number> of <filename> exceeds XX characters

The specified line was too long.

ERROR - Pathname on line <line number> of <filename>
exceeds XX characters.

The specified line was too long.

ERROR - No pathnames found in file: <filename>

The indicated modpath.lst file does not have pathnames properly listed.

ERROR - Problems reading ifspec.ifs in directory <pathname>

The Interface Specification File (ifspec.ifs) for the code model could not be read.

ERROR - Model name <model name> is same as internal SPICE model name

A model has been given the same name as an intrinsic SPICE device.

ERROR - Model name ’<model name>’ in directory: <pathname>
is same as
model name ’<model name>’ in directory: <pathname>

Two models in different directories have the same name.

ERROR - C function name ’<function name>’ in directory: <pathname>,
is same as
C function name ’<function name>’ in directory: <pathname>

Two C language functions in separate model directories have the same names; these would
cause a collision when linking the final executable.

ERROR - Problems opening CMextrn.h for write
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The temporary file CMextern.h used in building the XSPICE simulator executable could not be
created or opened. Check permissions on directory.

ERROR - Problems opening CMinfo.h for write

The temporary file CMinfo.h used in building the XSPICE simulator executable could not be
created or opened. Check permissions on directory.

ERROR - Problems opening objects.inc file for write

The temporary file objects.inc used in building the XSPICE simulator executable could not be
created or opened. Check permissions on directory.

ERROR - Could not open input .mod file: <filename>

The Model Definition File that contains the definition of the Code Model’s behavior (usually
cfunc.mod) was not found or could not be read.

ERROR - Could not open output .c: <filename>

The indicated C language file that the preprocessor creates could not be created or opened.
Check permissions on directory.

Error parsing .mod file: <filename>

Problems were encountered by the preprocessor in interpreting the indicated Model Definition
File.

ERROR - File not found: <filename>

The indicated file was not found or could not be opened.

Error parsing interface specification file

Problems were encountered by the preprocessor in interpreting the indicated Interface Specifi-
cation File.

ERROR - Can’t create file: <filename>

The indicated file could not be created or opened. Check permissions on directory.

ERROR - write.port.info() - Number of allowed types cannot be zero

There must be at least one port type specified in the list of allowed types.
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illegal quoted character in string (expected "\" or "\\")

A string was found with an illegal quoted character in it.

unterminated string literal

A string was found that was not terminated.

Unterminated comment

A comment was found that was not terminated.

Port ’<port name>’ not found

The indicated port name was not found in the Interface Specification File.

Port type ’vnam’ is only valid for ’in’ ports

The port type ‘vnam’ was used for a port with direction ‘out’ or ‘inout’. This type is only
allowed on ‘in’ ports.

Port types ’g’, ’gd’, ’h’, ’hd’ are only valid for ’inout’ ports

Port type ‘g’, ‘gd’, ‘h’, or ‘hd’ was used for a port with direction ‘out’ or ‘in’. These types are
only allowed on ‘inout’ ports.

Invalid parameter type - POINTER type valid only for STATIC_VARs

The type POINTER was used in a section of the Interface Specification file other than the
STATIC_VAR section.

Port default type is not an allowed type

A default type was specified that is not one of the allowed types for the port.

Incompatible port types in ‘allowed_types’ clause

Port types listed under ‘Allowed_Types’ in the Interface Specification File must all have the
same underlying data type. It is illegal to mix analog and eventdriven types in a list of allowed
types.

Invalid parameter type (saw <parameter type 1> - expected <parameter type 2>)
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A parameter value was not compatible with the specified type for the parameter.

Named range not allowed for limits

A name was found where numeric limits were expected.

Direction of port ’<port number>’ in <port name>()
is not <IN or OUT> or INOUT

A problem exists with the direction of one of the elements of a port vector.

Port ’<port name>’ is an array - subscript required

A port was referenced that is specified as an array (vector) in the Interface Specification File. A
subscript is required (e.g. myport[i])

Parameter ’<parameter name>’ is an array - subscript required

A parameter was referenced that is specified as an array (vector) in the Interface Specification
File. A subscript is required (e.g. myparam[i])

Port ’<port name>’ is not an array - subscript prohibited

A port was referenced that is not specified as an array (vector) in the Interface Specification
File. A subscript is not allowed.

Parameter ’<parameter name>’ is not an array - subscript prohibited

A parameter was referenced that is not specified as an array (vector) in the Interface Specifica-
tion File. A subscript is not allowed.

Static variable ’<static variable name>’ is not an array - subscript prohibited

Array static variables are not supported. Use a POINTER type for the static variable.

Buffer overflow - try reducing the complexity of CM-macro array subscripts

The argument to a code model accessor macro was too long.

Unmatched )

An open ( was found with no corresponding closing ).

Unmatched ]

An open [ was found with no corresponding closing ].
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29.2 Simulator Error Messages

The following is a list of error messages that may be encountered while attempting to run a
simulation (with the exception of those error messages generated by individual code models).
Most of these errors are generated by the simulator while attempting to parse a SPICE deck.
These are listed individually, and explanations follow the name/listing.

ERROR - Scalar port expected, [ found

A scalar connection was expected for a particular port on the code model, but the symbol [
which is used to begin a vector connection list was found.

ERROR - Unexpected ]

A ] was found where not expected. Most likely caused by a missing [.

ERROR - Unexpected [ - Arrays of arrays not allowed

A [ character was found within an array list already begun with another [ character.

ERROR - Tilde not allowed on analog nodes

The tilde character ~ was found on an analog connection. This symbol, which performs state
inversion, is only allowed on digital nodes and on User-Defined Nodes only if the node type
definition allows it.

ERROR - Not enough ports

An insufficient number of node connections was supplied on the instance line. Check the Inter-
face Specification File for the model to determine the required connections and their types.

ERROR - Expected node/instance identifier

A special token (e.g. [ ] < > ...) was found when not expected.

ERROR - Expected node identifier

A special token (e.g. [ ] < > ...) was found when not expected.

ERROR - unable to find definition of model <name>

A .model line for the referenced model was not found.

ERROR - model: %s - Array parameter expected - No array delimiter found
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An array (vector) parameter was expected on the .model card, but enclosing [ ] characters were
not found to delimit its values.

ERROR - model: %s - Unexpected end of model card

The end of the indicated .model line was reached before all required information was supplied.

ERROR - model: %s - Array parameter must have at least one value

An array parameter was encountered that had no values.

ERROR - model: %s - Bad boolean value

A bad values was supplied for a Boolean. Value used must be TRUE, FALSE, T, or F.

ERROR - model: %s - Bad integer, octal, or hex value

A badly formed integer value was found.

ERROR - model: %s - Bad real value

A badly formed real value was found.

ERROR - model: %s - Bad complex value

A badly formed complex number was found. Complex numbers must be enclosed in < > delim-
iters.

29.3 Code Model Error Messages

The following is a list of error messages that may be encountered while attempting to run a
simulation with certain code models. These are listed alphabetically based on the name of the
code model, and explanations follow the name and listing.

29.3.1 Code Model aswitch
cntl_error:

*****ERROR*****
ASWITCH: CONTROL voltage delta less than 1.0e-12

This message occurs as a result of the cntl_off and cntl_on values being less than 1.0e-12 volt-
s/amperes apart.
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29.3.2 Code Model climit
climit_range_error:

**** ERROR ****
* CLIMIT function linear range less than zero. *

This message occurs whenever the difference between the upper and lower control input values
are close enough that there is no effective room for proper limiting to occur; this indicates an
error in the control input values.

29.3.3 Code Model core
allocation_error:

***ERROR***
CORE: Allocation calloc failed!

This message is a generic message related to allocating sufficient storage for the H and B array
values.

limit_error:
***ERROR***
CORE: Violation of 50% rule in breakpoints!

This message occurs whenever the input domain value is an absolute value and the H coordinate
points are spaced too closely together (overlap of the smoothing regions will occur unless the
H values are redefined).

29.3.4 Code Model d_osc
d_osc_allocation_error:

**** Error ****
D_OSC: Error allocating VCO block storage

Generic block storage allocation error.

d_osc_array_error:
**** Error ****
D_OSC: Size of control array different than frequency array

Error occurs when there is a different number of control array members than frequency array
members.

d_osc_negative_freq_error:
**** Error ****
D_OSC: The extrapolated value for frequency
has been found to be negative...
Lower frequency level has been clamped to 0.0 Hz.

Occurs whenever a control voltage is input to a model which would ordinarily (given the speci-
fied control/freq coordinate points) cause that model to attempt to generate an output oscillating
at zero frequency. In this case, the output will be clamped to some DC value until the control
voltage returns to a more reasonable value.



29.3. CODE MODEL ERROR MESSAGES 473

29.3.5 Code Model d_source
loading_error:

***ERROR***
D_SOURCE: source.txt file was not read successfully.

This message occurs whenever the d source model has experienced any difficulty in loading the
source.txt (or user-specified) file. This will occur with any of the following problems:

• Width of a vector line of the source file is incorrect.

• A time-point value is duplicated or is otherwise not monotonically increasing.

• One of the output values was not a valid 12-State value (0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz,
0u, 1u, Uu).

29.3.6 Code Model d_state
loading_error:

***ERROR***
D_STATE: state.in file was not read successfully.
The most common cause of this problem is a trailing
blank line in the state.in file

This error occurs when the state.in file (or user-named state machine input file) has not been
read successfully. This is due to one of the following:

• The counted number of tokens in one of the file’s input lines does not equal that required
to define either a state header or a continuation line (Note that all comment lines are
ignored, so these will never cause the error to occur).

• An output state value was defined using a symbol which was invalid (i.e., it was not one
of the following: 0s, 1s, Us, 0r, 1r, Ur, 0z, 1z, Uz, 0u, 1u, Uu).

• An input value was defined using a symbol which was invalid (i.e., it was not one of the
following: 0, 1, X, or x).

index_error:
***ERROR***
D_STATE: An error exists in the ordering of states values
in the states->state[] array. This is usually caused
by non-contiguous state definitions in the state.in file

This error is caused by the different state definitions in the input file being non-contiguous. In
general, it will refer to the different states not being defined uniquely, or being “broken up” in
some fashion within the state.in file.
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29.3.7 Code Model oneshot
oneshot_allocation_error:

**** Error ****
ONESHOT: Error allocating oneshot block storage

Generic storage allocation error.

oneshot_array_error:
**** Error ****
ONESHOT: Size of control array different than pulse-width array

This error indicates that the control array and pulse-width arrays are of different sizes.

oneshot_pw_clamp:
**** Warning ****
ONESHOT: Extrapolated Pulse-Width Limited to zero

This error indicates that for the current control input, a pulse-width of less than zero is indicated.
The model will consequently limit the pulse width to zero until the control input returns to a
more reasonable value.

29.3.8 Code Model pwl
allocation_error:

***ERROR***
PWL: Allocation calloc failed!

Generic storage allocation error.

limit_error:
***ERROR***
PWL: Violation of 50% rule in breakpoints!

This error message indicates that the pwl model has an absolute value for its input domain, and
that the x_array coordinates are so close together that the required smoothing regions would
overlap. To fix the problem, you can either spread the x_array coordinates out or make the input
domain value smaller.

29.3.9 Code Model s_xfer
num_size_error:

***ERROR***
S_XFER: Numerator coefficient array size greater than
denominator coefficient array size.

This error message indicates that the order of the numerator polynomial specified is greater
than that of the denominator. For the s_xfer model, the orders of numerator and denominator
polynomials must be equal, or the order of the denominator polynomial must be greater than
that or the numerator.
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29.3.10 Code Model sine
allocation_error:

**** Error ****
SINE: Error allocating sine block storage

Generic storage allocation error.

sine_freq_clamp:
**** Warning ****
SINE: Extrapolated frequency limited to 1e-16 Hz

This error occurs whenever the controlling input value is such that the output frequency ordi-
narily would be set to a negative value. Consequently, the output frequency has been clamped
to a near-zero value.

array_error:
**** Error ****
SINE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and the frequency
array are different sizes.

29.3.11 Code Model square
square_allocation_error:

**** Error ****
SQUARE: Error allocating square block storage

Generic storage allocation error.

square_freq_clamp:
**** WARNING ****
SQUARE: Frequency extrapolation limited to 1e-16

This error occurs whenever the controlling input value is such that the output frequency ordi-
narily would be set to a negative value. Consequently, the output frequency has been clamped
to a near-zero value.

square_array_error:
**** Error ****
SQUARE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and the frequency
array are different sizes.
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29.3.12 Code Model triangle
triangle_allocation_error:

**** Error ****
TRIANGLE: Error allocating triangle block storage

Generic storage allocation error.

triangle_freq_clamp:
**** Warning ****
TRIANGLE: Extrapolated Minimum Frequency Set to 1e-16 Hz

This error occurs whenever the controlling input value is such that the output frequency ordi-
narily would be set to a negative value. Consequently, the output frequency has been clamped
to a near-zero value.

triangle_array_error:
**** Error ****
TRIANGLE: Size of control array different than frequency array

This error message normally occurs whenever the controlling input array and the frequency
array are different sizes.
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Chapter 30

CIDER User’s Manual

The CIDER User’s Manual that follows is derived from the original manual being part of the
PhD thesis from David A. Gates from UC Berkeley. Unfortunately the manual here is not yet
complete, so please refer to the thesis for detailed information. Literature on CODECS, the
predecessor of CIDER, is available here from UCB: TechRpt ERL-90-96 and TechRpt ERL-
88-71.

30.1 SPECIFICATION

Overview of numerical-device specification

The input to CIDER consists of a SPICE-like description of a circuit, its analyses and its com-
pact device models, and PISCES-like descriptions of numerically analyzed device models. For
a description of the SPICE input format, consult the SPICE3 Users Manual [JOHN92].

To simulate devices numerically, two types of input must be added to the input file. The first
is a model description in which the common characteristics of a device class are collected. In
the case of numerical models, this provides all the information needed to construct a device
cross-section, such as, for example, the doping profile. The second type of input consists of one
or more element lines that specify instances of a numerical model, describe their connection to
the rest of the circuit, and provide additional element-specific information such as device layout
dimensions ans initial bias information.

The format of a numerical device model description differs from the standard approach used
for SPICE3 compact models. It begins the same way with one line containing the .MODEL
keyword followed by the name of the model, device type and modeling level. However, instead
of providing a single long list of parameters and their values, numerical model parameters are
grouped onto cards. Each type of card has its own set of valid parameters. In all cases, the
relative ordering of different types of cards is unimportant. However, for cards of the same type
(such as mesh-specification cards), their order in the input file can be important in determining
the device structure.

Each card begins on a separate line of the input file. In order to let CIDER know that card
lines are continuations of a numerical model description, each must begin with the continuation
character “+”. If there are too many parameters on a given card to allow it fit on a single line,
the card can be continued by adding a second “+” to the beginning of the next line. However,
the name and value of a parameter should always appear on the same line.
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Several features are provided to make the numerical model format more convenient.

Blank space can follow the initial “+” to separate it from the name of a card or the card con-
tinuation “+”. Blank lines are also permitted, as long as they also begin with an initial “+”.
Parentheses and commas can be used to visually group or separate parameter definitions. In
addition, while it is common to add an equal sign between a parameter and its value, this is not
strictly necessary.

The name of any card can be abbreviated, provided that the abbreviation is unique. Parameter
name abbreviations can also be used if they are unique in the list of a card’s parameters. Numeric
parameter values are treated identically as in SPICE3, so exponential notation, engineering
scale factors and units can be attached to parameter values: tau=10ns, nc=3.0e19cm^-3. In
SPICE3, the value of a FLAG model parameter is changed to TRUE simply by listing its name
on the model line. In CIDER, the value of a numerical model FLAG parameter can be turned
back to FALSE by preceding it by a caret “^”. This minimizes the amount of input change
needed when features such as debugging are turned on and off. In certain cases it is necessary
to include file names in the input description and these names may contain capital letters. If
the file name is part of an element line, the inout parser will convert these capitals to lowercase
letters. To protect capitalization at any time, simply enclose the string in double quotes “””.

The remainder of this manual describes how numerically analyzed elements and models can be
used in CIDER simulations. The manual consists of three parts. First, all of the model cards and
their parameters are described. This is followed by a section describing the three basic types of
numerical models and their corresponding element lines. In the final section, several complete
examples of CIDER simulations are presented.

Several conventions are used in the card descriptions. In the card synopses, the name of a card
is followed by a list of parameter classes. Each class is represented by a section in the card
parameter table, in the same order as it appears in the synopsis line. Classes which contain
optional parameters are surrounded by brackets: [...]. Sometimes it only makes sense for a
single parameter to take effect. (For example, a material can not simultaneously be both Si
and SiO2.) In such cases, the various choices are listed sequentially, separated by colons. The
same parameter often has a number of different acceptable names, some of which are listed
in the parameter tables.1 These aliases are separated by vertical bars: “|”. Finally, in the card
examples, the model continuation pluses have been removed from the card lines for clarity’s
sake.

30.1.1 Examples

The model description for a two-dimensional numerical diode might look something like what
follows. This example demonstrates many of the features of the input format described above.
Notice how the .MODEL line and the leading pluses form a border around the model descrip-
tion:

1Some of the possibilities are not listed in order to shorten the lengths of the parameter tables. This makes
the use of parameter abbreviations somewhat troublesome since an unlisted parameter may abbreviate to the same
name as one that is listed. CIDER will produce a warning when this occurs. Many of the undocumented parameter
names are the PISCES names for the same parameters. The adventurous soul can discover these names by delving
through the “cards” directory of the source code distribution looking for the C parameter tables.
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Example: Numerical diode

.MODEL M_NUMERICAL NUPD LEVEL=2
+ ca rdname l number l = v a l 1 ( number2 v a l 2 ) , ( number3 = v a l 3 )
+ cardname2 number l = v a l 1 s t r i n g 1 = name1
+
+ cardname3 number l = va l1 , f l a g 1 , ^ f l a g 2
+ + number2= va l2 , f l a g 3

The element line for an instance of this model might look something like the following. Double
quotes are used to protect the file name from decapitalization:

d l 1 2 M_NUMERICAL a r e a =lOOpm^2 i c . f i l e = " d i o d e . IC "

30.2 BOUNDARY, INTERFACE

Specify properties of a domain boundary or the interface between two boundaries

SYNOPSIS

boundary domain [ bounding−box ] [ p r o p e r t i e s ]
i n t e r f a c e domain n e i g h b o r [ bounding−box ] [ p r o p e r t i e s ]

30.2.1 DESCRIPTION

The boundary and interface cards are used to set surface physics parameters along the boundary
of a specified domain. Normally, the parameters apply to the entire boundary, but there are two
ways to restrict the area of interest. If a neighboring domain is also specified, the parameters
are only set on the interface between the two domains. In addition, if a bounding box is given,
only that portion of the boundary or interface inside the bounding box will be set.

If a semiconductor-insulator interface is specified, then an estimate of the width of any inversion
or accumulation layer that may form at the interface can be provided. If the surface mobility
model (cf. models card) is enabled, then the model will apply to all semiconductor portions of
the device within this estimated distance of the interface. If a point lies within the estimated
layer width of more than one interface, it belong to the interface specified first in the input file.
If the layer width given is less than or equal to zero, it is automatically replaced by an estimate
calculated from the doping near the interface. As a consequence, if the doping varies so will the
layer width estimate.

Each edge of the bounding box can be specified in terms of its location or its mesh-index in the
relevant dimension, or defaulted to the respective boundary of the simulation mesh.
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30.2.2 PARAMETERS

Name Type Description Units
Domain Integer ID number of primary domain
Neighbor Integer ID number of neighboring domain
X.Low Real Lowest X location of bounding box µm
: IX.Low Integer Lowest X mesh-index of bounding box
X.High Real Highest X location of bounding box µm
: IX.High Integer Highest X mesh-index of bounding box
Y.Low Real Lowest Y location of bounding box µm
: IY.Low Integer Lowest Y mesh-index of bounding box
Y.High Real Highest Y location of bounding box µm
:IY.High Integer Highest Y mesh-index of bounding box
Qf Real Fixed interface charge C/cm2

SN Real Surface recombination velocity - electrons cm/s

SP Real Surface recombination velocity - holes cm/s

Layer.Width Real Width of surface layer µm

30.2.3 EXAMPLES

The following shows how the surface recombination velocities at an Si-SiO2 interface might be
set:

i n t e r f a c e dom= l n e i g h =2 sn= l . Oe4 sp= l . Oe4

In a MOSFET with a 2.0µm gate width and 0.1µm source and drain overlap, the surface channel
can be restricted to the region between the metallurgical junctions and within 100 Ȧ ( 0.01 µm
) of the interface:

i n t e r f a c e dom= l n e i g h =2 x . l = l . l x . h =2 .9 l a y e r .w=0.01

The inversion layer width in the previous example can be automatically determined by setting
the estimate to 0.0:

i n t e r f a c e dom= l n e i g h=% x . l = l . l x . h =2 .9 l a y e r .w=0 .0

30.3 COMMENT

Add explanatory comments to a device definition

SYNOPSIS

comment [ t e x t ]
* [ t e x t ]
$ [ t e x t ]
# [ t e x t ]
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30.3.1 DESCRIPTION

Annotations can be added to a device definition using the comment card. All text on a comment
card is ignored. Several popular commenting characters are also supported as aliases: ’*’ from
SPICE, ’$’ from PISCES, and ’#’ from LINUX shell scripts.

30.3.2 EXAMPLES

A SPICE-like comment is followed by a PISCES-like comment and shell script comment:

* CIDER and SPICE would i g n o r e t h i s i n p u t l i n e
$ CIDER and PISCES would i g n o r e t h i s , b u t SPICE wouldn ’ t
# CIDER and LINUX S h e l l s c r i p t s would i g n o r e t h i s i n p u t l i n e

30.4 CONTACT

Specify properties of an electrode

SYNOPSIS

c o n t a c t number [ w o r k f u n c t i o n ]

30.4.1 DESCRIPTION

The properties of an electrode can be set using the contact card. The only changeable property is
the work-function of the electrode material and this only affects contacts made to an insulating
material. All contacts to semiconductor material are assumed to be ohmic in nature.

30.4.2 PARAMETERS

Name Type Description
Number Integer ID number of the electrode

Work-function Real Work-function of electrode material. ( eV )

30.4.3 EXAMPLES

The following shows how the work-function of the gate contact of a MOSFET might be changed
to a value appropriate for a P+ polysilicon gate:

c o n t a c t num=2 workf =5 .29

30.4.4 SEE ALSO

electrode, material
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30.5 DOMAIN, REGION

Identify material-type for section of a device

SYNOPSIS

domain number m a t e r i a l [ p o s i t i o n ]
r e g i o n number m a t e r i a l [ p o s i t i o n ]

30.5.1 DESCRIPTION

A device is divided into one or more rectilinear domains, each of which has a unique identifica-
tion number and is composed of a particular material.

Domain (aka region) cards are used to build up domains by associating a material type with a
box-shaped section of the device. A single domain may be the union 0f multiple boxes. When
multiple domain cards overlap in space, the one occurring last in the input file will determine
the ID number and material type of the overlapped region.

Each edge of a domain box can be specified in terms of its location or mesh-index in the relevant
dimension, or defaulted to the respective boundary of the simulation mesh.

30.5.2 PARAMETERS

Name Type Description
Number Integer ID number of this domain
Material Integer ID number of material used by this domain
X.Low Real Lowest X location of domain box, ( µm )

:IX.Low Integer Lowest X mesh-index of domain box
X.High Real Highest X location of domain box, ( µm )

:IX-High Integer Highest X mesh-index of domain box
Y.Low Real Lowest Y location of domain box, ( µm )

:IY.Low Integer Lowest Y mesh-index of domain box
Y.High Real Highest Y location of domain box, ( µm )

:IY.High Integer Highest Y mesh-index of domain box

30.5.3 EXAMPLES

Create a 4.0 pm wide by 2.0 pm high domain out of material #1:

domain num= l m a t e r i a l = l x . l =O.O x . h =4 .0 y . l =O.O y . h =2 .0

The next example defines the two domains that would be typical of a planar MOSFET simula-
tion. One occupies all of the mesh below y = 0 and the other occupies the mesh above y = 0.
Because the x values are left unspecified, the low and high x boundaries default to the edges of
the mesh:
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domain n= l m= l y . l =O.O
domain n=2 m=2 y . h=O.O

30.5.4 SEE ALSO

x.mesh, material

30.6 DOPING

Add dopant to regions of a device

SYNOPSIS

dop ing [ domains ] p r o f i l e −t y p e [ l a t e r a l −p r o f i l e −t y p e ] [ a x i s ]
[ i m p u r i t y−t y p e 1 [ c o n s t a n t−box ] [ p r o f i l e −s p e c i f i c a t i o n s ]

30.6.1 DESCRIPTION

Doping cards are used to add impurities to the various domains of a device. Initially each
domain is dopant-free. Each new doping card creates a new doping profile that defines the
dopant concentration as a function of position. The doping at a particular location is then the
sum over all profiles of the concentration values at that position. Each profile can be restricted
to a subset of a device’s domains by supplying a list of the desired domains.

Otherwise, all domains are doped by each profile.

A profile has uniform concentration inside the constant box. Outside this region, it varies ac-
cording to the primary an lateral profile shapes. In 1D devices the lateral shape is unused and in
2D devices the y-axis is the default axis for the primary profile. Several analytic functions can
be used to define the primary profile shape. Alternatively, empirical or simulated profile data
can be extracted from a file. For the analytic profiles, the doping is the product of a profile func-
tion (e.g. Gaussian) and a reference concentration, which is either the constant concentration
of a uniform profile, or the peak concentration for any of the other functions. If concentration
data is used instead take from an ASCII file containing a list of location-concentration pairs
or a SUPREM3 exported file, the name of the file must be provided. If necessary, the final
concentration at a point is then found by multiplying the primary profile concentration by the
value of the lateral profile function at that point. Empirical profiles must first be normalized by
the value at 0.0 to provide a usable profile functions. Alternatively, the second dimension can
be included by assigning the same concentration to all points equidistant from the edges of the
constant box. The contours of the profile are the circular.

Unless otherwise specified, the added impurities are assumes to be N type. However, the name
of a specific dopant species is needed when extracting concentration information for that impu-
rity from a SUPREM3 exported file.

Several parameters are used to adjust the basic shape of a profile functions so that the final,
constructed profile, matches the doping profile in the real device. The constant box region
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Figure 30.1: 1D doping profiles with location > 0.

should coincide with a region of constant concentration in the device. For uniform profiles its
boundaries default to the mesh boundaries. For the other profiles the constant box starts as a
point and only acquires width or height if both the appropriate edges are specified. The location
of the peak of the primary profile can be moved away from the edge of the constant box. A
positive location places the peak outside the constant box (cf. Fig. 30.1), and a negative value
puts it inside the constant box (cf. Fig. 30.2). The concentration in the constant box is then
equal to the value of the profile when it intersects the edge of the constant box. The argument
of the profile function is a distance expressed in terms of the characteristic length (by default
equal to 1µm). The longer this length, the more gradually the profile will change. For example,
in Fig. A.1 and Fig A.2, the profiles marked (a) have characteristic lengths twice those of the
profiles marked (b). The location and characteristic length for the lateral profile are multiplied
by the lateral ratio. This allows the use of different length scales for the primary and lateral
profiles. For rotated profiles, this scaling is taken into account, and the profile contours are
elliptical rather than circular.
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Figure 30.2: 1D doping profiles with location < 0.
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30.6.2 PARAMETERS

Name Type Description
Domains Int List List of domains to dope
Uniform: Flag Primary profile type
Linear:
Erfc:

Exponential:
Suprem3:

Ascii:
Ascii Suprem3

InFile String Name of Suprem3, Ascii or Ascii Suprem3 input file
Lat.Rotate: Flag Lateral profile type
Lat.Unif:
Lat.Lin:

Lat.Gauss:
Lat.Erfc:
Lat.Exp

X.Axis:Y.Axis Flag Primary profile direction
N.Type: P.Type: Flag Impurity type

Donor: Acceptor:
Phosphorus:

Arsenic:
Antimony:

Boron
X.Low Real Lowest X location of constant box, (µm)
X.High Real Highest X location of constant box, (µm)
Y.Low Real Lowest Y location of constant box, (µm)
Y.High Real Highest Y location of constant box, (µm)

Conic | Peak.conic Real Dopant concentration, (cm−3)
Location | Range Real Location of profile edge/peak, (µm)

Char.Length Real Characteristic length of profile, (µm)
Ratio.Lat Real Ratio of lateral to primary distances

30.6.3 EXAMPLES

This first example adds a uniform background P-type doping of 1.0× 1016cm−3 to an entire
device:

dop ing un i fo rm p . t y p e conc= l . 0 e l 6

A Gaussian implantation with rotated lateral falloff, such as might be used for a MOSFET
source, is then added:

dop ing g a u s s l a t . r o t a t e n . t y p e conc= l . 0 e l 9
+ x . l =0 .0 x . h =0 .5 y . l =0 .0 y . h =0 .2 r a t i o =0 .7
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Alternatively, an error-function falloff could be used:

dop ing g a u s s l a t . e r f c conc= l . 0 e l 9
+ x . l =0 .0 x . h =0 .5 y . l =0 .0 y . h =0 .2 r a t i o =0 .7

Finally, the MOSFET channel implant is extracted from an ASCII-format SUPREM3 file. The
lateral profile is uniform, so that the implant is confined between X = 1µm and X = 3µm. The
profile begins at Y = 0µm (the high Y value defaults equal to the low Y value):

dop ing a s c i i suprem3 i n f i l e = i m p l a n t . s3 l a t . u n i f boron
+ x . l =1 .0 x . h =3 .0 y . l =0 .0

30.6.4 SEE ALSO

domain, mobility, contact, boundary

30.7 ELECTRODE

Set location of a contact to the device

SYNOPSIS

e l e c t r o d e [ number ] [ p o s i t i o n ]

30.7.1 DESCRIPTION

Each device has several electrodes which are used to connect the device to the rest of the circuit.
The number of electrodes depends on the type of device. For example, a MOSFET needs 4
electrodes. A particular electrode can be identified by its position in the list of circuit nodes
on the device element line. For example, the drain node of a MOSFET is electrode number 1,
while the bulk node is electrode number 4. Electrodes for which an ID number has not been
specified are assigned values sequentially in the order they appear in the input file.

For lD devices, the positions of two of the electrodes are predefined to be at the ends of the
simulation mesh. The first electrode is at the low end of the mesh, and the last electrode is at
the high end. The position of the special lD BJT base contact is set on the options card. Thus,
electrode cards are used exclusively for 2D devices.

Each card associates a portion of the simulation mesh with a particular electrode. In contrast to
domains, which are specified only in terms of boxes, electrodes can also be specified in terms of
line segments. Boxes and segments for the same electrode do not have to overlap. If they don’t,
it is assumed that the electrode is wired together outside the area covered by the simulation
mesh. However, pieces of different electrodes must not overlap, since this would represent
a short circuit. Each electrode box or segment can be specified in terms of the locations or
mesh-indices of its boundaries. A missing value defaults to the corresponding mesh boundary.
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30.7.2 PARAMETERS

Name Type Description
Number Integer ID number of this domain
X.Low Real Lowest X location of electrode, (µm)

:IX.Low Integer Lowest X mesh-index of electrode
X.High Real Highest X location of electrode, (µm)

:IX.High Integer Highest X mesh-index of electrode
Y.Low Real Lowest Y location of electrode, (µm)

:IY.Low Integer Lowest Y mesh-index of electrode
Y.High Real Highest Y location of electrode, (µm)

:IY.High Integer Highest Y mesh-index of electrode

30.7.3 EXAMPLES

The following shows how the four contacts of a MOSFET might be specified:

* DRAIN
e l e c t r o d e x . l =0 .0 x . h =0 .5 y . l =0 .0 y . h =0 .0
* GATE
e l e c t r o d e x . l =1 .0 x . h =3 .0 i y . l =0 i y . h=0
* SOURCE
e l e c t r o d e x . l =3 .0 x . h =4 .0 y . l =0 .0 y . h =0 .0
* BULK
e l e c t r o d e x . l =0 .0 x . h =4 .0 y . l =2 .0 y . h =2 .0

The numbering option can be used when specifying bipolar transistors with dual base contacts:

* EMITTER
e l e c t r o d e num=3 x . l =1 .0 x . h =2 .0 y . l =0 .0 y . h =0 .0
* BASE
e l e c t r o d e num=2 x . l =0 .0 x . h =0 .5 y . l =0 .0 y . h =0 .0
e l e c t r o d e num=2 x . l =2 .5 x . h =3 .0 y . l =0 .0 y . h =0 .0
* COLLECTOR
e l e c t r o d e num=1 x . l =0 .0 x . h =3 .0 y . l =1 .0 y . h =1 .0

30.7.4 SEE ALSO

domain, contact

30.8 END

Terminate processing of a device definition

SYNOPSIS

end



30.9. MATERIAL 491

30.8.1 DESCRIPTION

The end card stops processing of a device definition. It may appear anywhere within a definition.
Subsequent continuation lines of the definition will be ignored. If no end card is supplied, all
the cards will be processed.

30.9 MATERIAL

Specify physical properties of a material

SYNOPSIS

m a t e r i a l number t y p e [ p h y s i c a l−c o n s t a n t s ]

30.9.1 DESCRIPTION

The material card is used to create an entry in the list of materials used in a device. Each entry
needs a unique identification number and the type of the material. Default values are assigned
to the physical properties of the material. Most material parameters are accessible either here
or on the mobility or contact cards. However, some parameters remain inaccessible (e.g.
the ionization coefficient parameters). Parameters for most physical effect models are collected
here. Mobility parameters are handled separately by the mobility card. Properties of electrode
materials are set using the contact card.
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30.9.2 PARAMETERS

Name Type Description
Number Integer ID number of this material

Semiconductor : Silicon Flag Type of this material
: Polysilicon : GaAs
: Insulator : Oxide

: Nitride
Affinity Real Electron affinity (eV)

Permittivity Real Dielectric permittivity (F/cm)
Nc Real Conduction band density (cm−3)
Nv Real Valence band density (cm−3)
Eg Real Energy band gap (eV)

dEg.dT Real Bandgap narrowing with temperature (eV/◦K)
Eg.Tref Real Bandgap reference temperature, ( °K )
dEg.dN Real Bandgap narrowing with N doping, (eV/cm−3)
Eg.Nref Real Bandgap reference concentration - N type, (cm−3)
dEg.dP Real Bandgap narrowing with P doping, (eV/cm−3)
Eg.Pref Real Bandgap reference concentration - P type, (cm−3)

TN Real SRH lifetime - electrons, (sec)
SRH.Nref Real SRH reference concentration - electrons (cm−3)

TP Real SRH lifetime - holes, (sec)
SRH.Pref Real SRH reference concentration - holes (cm−3)

CN Real Auger coefficient - electrons (cm6/sec)
CP Real Auger coefficient - holes (cm6/sec)

ARichN Real Richardson constant - electrons, ( A/ cm2
◦K2 )

ARichP Real Richardson constant - holes, ( A/ cm2
◦K2 )

30.9.3 EXAMPLES

Set the type of material #1 to silicon, then adjust the values of the temperature-dependent
bandgap model parameters:

m a t e r i a l num=1 s i l i c o n eg =1.12 deg . d t =4 .7 e−4 eg . t r e f =640 .0

The recombination lifetimes can be set to extremely short values to simulate imperfect semi-
conductor material:

m a t e r i a l num=2 s i l i c o n t n =1 ps t p =1 ps

30.9.4 SEE ALSO

domain, mobility, contact, boundary



30.10. METHOD 493

30.10 METHOD

Choose types and parameters of numerical methods

SYNOPSIS

method [ t y p e s ] [ p a r a m e t e r s ]

30.10.1 DESCRIPTION

The method card controls which numerical methods are used during a simulation and the pa-
rameters of these methods. Most of these methods are optimizations that reduce run time, but
may sacrifice accuracy or reliable convergence.

For majority-carrier devices such as MOSFETs, one carrier simulations can be used to save
simulation time. The systems of equations in AC analysis may be solved using either direct
or successive-over-relaxation techniques. Successive-over-relaxation is faster, but at high fre-
quencies, it may fail to converge or may converge to the wrong answer. In some cases, it is
desirable to obtain AC parameters as functions of DC bias conditions. If necessary, a one-point
AC analysis is performed at a predefined frequency in order to obtain these small-signal param-
eters. The default for this frequency is 1 Hz. The Jacobian matrix for DC and transient analyses
can be simplified by ignoring the derivatives of the mobility with respect to the solution vari-
ables. However, the resulting analysis may have convergence problems. Additionally, if they
are ignored during AC analyses, incorrect results may be obtained.

A damped Newton method is used as the primary solution technique for the device-level partial
differential equations. This algorithm is based on an iterative loop that terminates when the error
in the solution is small enough or the iteration limit is reached. Error tolerances are used when
determining if the error is “small enough”. The tolerances are expressed in terms of an absolute,
solution-independent error and a relative, solution-dependent error. The absolute-error limit can
be set on this card. The relative error is computed by multiplying the size of the solution by the
circuit level SPICE parameter RELTOL.

30.10.2 Parameters

Name Type Description
OneCarrier Flag Solve for majority carriers only
AC analysis String AC analysis method, ( either DIRECT or SOR)

NoMobDeriv Flag Ignore mobility derivatives
Frequency Real AC analysis frequency, ( Hz )

ItLim Integer Newton iteration limit
DevTol Real Maximum residual error in device equations

30.10.3 Examples

Use one carrier simulation for a MOSFET, and choose direct method AC analysis to ensure
accurate, high frequency results:
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method onec ac . an= d i r e c t

Tolerate no more than 10−10 as the absolute error in device-level equations, and perform no
more than 15 Newton iterations in any one loop:

method d e v t o l =1e−10 i t l i m =15

30.11 Mobility

Specify types and parameters of mobility models

SYNOPSIS

m o b i l i t y m a t e r i a l [ c a r r i e r ] [ p a r a m e t e r s ] [ models ] [ i n i t i a l i z e ]

30.11.1 Description

The mobility model is one of the most complicated models of a material’s physical properties.
As a result, separate cards are needed to set up this model for a given material.

Mobile carriers in a device are divided into a number of different classes, each of which has
different mobility modelling. There are three levels of division. First, electrons and holes are
obviously handled separately. Second, carriers in surface inversion or accumulation layers are
treated differently than carriers in the bulk. Finally, bulk carriers can be either majority or
minority carriers.

For surface carriers, the normal-field mobility degradation model has three user-modifiable pa-
rameters. For bulk carriers, the ionized impurity scattering model has four controllable pa-
rameters. Different sets of parameters are maintained for each of the four bulk carrier types:
majority-electron, minority-electron, majority-hole and minority-hole. Velocity saturation mod-
eling can be applied to both surface and bulk carriers. However, only two sets of parameters are
maintained: one for electrons and one for holes. These must be changed on a majority carrier
card (i.e. when the majority flag is set).

Several models for the physical effects are available, along with appropriate default values.
Initially, a universal set of default parameters usable with all models is provided. These can be
overridden by defaults specific to a particular model by setting the initialization flag. These can
then be changed directly on the card itself. The bulk ionized impurity models are the Caughey-
Thomas (CT) model and the Scharfetter-Gummel (SG) model [CAUG671, [SCHA69]. Three
alternative sets of defaults are available for the Caughey-Thomas expression. They are the Arora
(AR) parameters for Si [AROR82], the University of Florida (UF) parameters for minority
carriers in Si [SOLL90], and a set of parameters appropriate for GaAs (GA). The velocity-
saturation models are the Caughey-Thomas (CT) and Scharfetter-Gummel (SG) models for Si,
and the PISCES model for GaAs (GA). There is also a set of Arora (AR) parameters for the
Caughey-Thomas model.
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30.11.2 Parameters

Name Type Description
Material Integer ID number of material

Electron : Hole Flag Mobile carrier
Majority : Minority Flag Mobile carrier type

MUS Real Maximum surface mobility, ( cm2/Vs )
EC.A Real Surface mobility 1st-order critical field, ( V/cm )
EC.B Real Real Surface mobility 2nd-order critical field, ( V2/cm2 )

MuMax Real Maximum bulk mobility, ( cm2/Vs )
MuMin Real Minimum bulk mobility, ( cm2/Vs)
NtRef Real Ionized impurity reference concentration, ( cm-3 )
NtExp Real Ionized impurity exponent
Vsat Real Saturation velocity, ( cm/s )

Vwarm Real Warm carrier reference velocity, ( cm/s )
ConcModel String Ionized impurity model, ( CT, AR, UF, SG, Dr GA )
FieldModel String Velocity saturation model, ( CT, AR, SG, or GA )

Init Flag Copy model-specific defaults

30.11.3 Examples

The following set of cards completely updates the bulk mobility parameters for material #1:

m o b i l i t y mat= l concmod=sg f i e l d m o d =sg
m o b i l i t y mat= l e l e c major mumax=1000.0 mumin= l 0 0 . 0
+ n t r e f = l . 0 e l 6 n t e x p =0 .8 v s a t = l . 0 e7 vwarm =3.0 e6
m o b i l i t y mat= l e l e c minor mumax=1000.0 mumin =200 .O
+ n t r e f = l . 0 e l 7 n t e x p =0 .9
m o b i l i t y mat= l h o l e major mumax=500.0 mumin =50 .0
+ n t r e f = l . 0 e l 6 n t e x p =0 .7 v s a t =8 .0 e6 vwarm= l . 0 e6
m o b i l i t y mat= l h o l e minor mumax=500.0 mumin =150.0
+ n t r e f = l . 0 e l 7 n t e x p =0 .8

The electron surface mobility is changed by the following:

m o b i l i t y mat= l e l e c mus =800.0 ec . a =3 .0 e5 ec . b =9 .0 e5

Finally, the default Scharfetter-Gummel parameters can be used in Si with the GaAs velocity-
saturation model (even though it doesn’t make physical sense!):

m o b i l i t y mat= l i n i t e l e c major f i e l d m o d e l =sg
m o b i l i t y mat= l i n i t h o l e major f i e l d m o d e l =sg
m o b i l i t y mat= l f i e l d m o d e l =ga

30.11.4 SEE ALSO

material
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30.11.5 BUGS

The surface mobility model does not include temperature-dependence for the transverse-field
parameters. Those parameters will need to be adjusted by hand.

30.12 MODELS

Specify which physical models should be simulated

SYNOPSIS

models [ model f l a g s ]

30.12.1 DESCRIPTION

The models card indicates which physical effects should be modeled during a simulation. Ini-
tially, none of the effects are included. A flag can be set false by preceding by a caret.

30.12.2 Parameters

Name Type Description
BGN Flag Bandgap narrowing
SRH Flag Shockley-Reed-Hall recombination

ConcTau Flag Concentration-dependent SRH lifetimes
Auger Flag Auger recombination

Avalanche Flag Local avalanche generation
TempMob Flag Temperature-dependent mobility
ConcMob Flag Concentration-dependent mobility
FieldMob Flag Lateral-field-dependent mobility
TransMob Flag Transverse-field-dependent surface mobility
SurfMob Flag Activate surface mobility model

30.12.3 Examples

Turn on bandgap narrowing, and all of the generation-recombination effects:

models bgn s r h c o n c t a u a u g e r a v a l

Amend the first card by turning on lateral- and transverse-field-dependent mobility in surface
charge layers, and lateral-field-dependent mobility in the bulk. Also, this line turns avalanche
generation modeling off.

models surfmob t ransmob f i e l d m o b ^ a v a l
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30.12.4 See also

material, mobility

30.12.5 Bugs

The local avalanche generation model for 2D devices does not compute the necessary contri-
butions to the device-level Jacobian matrix. If this model is used, it may cause convergence
difficulties and it will cause AC analyses to produce incorrect results.

30.13 OPTIONS

Provide optional device-specific information

SYNOPSIS

o p t i o n s [ dev i ce−t y p e ] [ i n i t i a l −s t a t e ] [ d i m e n s i o n s ]
[ measurement−t e m p e r a t u r e ]

30.13.1 DESCRIPTION

The options card functions as a catch-all for various information related to the circuit-device
interface. The type of a device can be specified here, but will be defaulted if none is given.
Device type is used primarily to determine how to limit the changes in voltage between the
terminals of a device. It also helps determine what kind of boundary conditions are used as
defaults for the device electrodes.

A previously calculated state, stored in the named initial-conditions file, can be loaded at the
beginning of an analysis. If it is necessary for each instance of a numerical model to start in a
different state, then the unique flag can be used to generate unique filenames for each instance
by appending the instance name to the given filename. This is the same method used by CIDER
to generate unique filenames when the states are originally saved. If a particular state file does
not fit. this pattern, the filename can be entered directly on the instance line.

Mask dimension defaults can be set so that device sizes can be specified in terms of area or
width. Dimensions for the special lD BJT base contact can also be controlled. The measurement
temperature of material parameters, normally taken to be the circuit default, can be overridden.
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30.13.2 Parameters

Name Type Description
Resistor Flag Resistor

: Capacitor Flag Capacitor
: Diode Flag Diode

: Bipolar|BJT Flag Bipolar transistor
: MOSFET Flag MOS field-effect transistor

: JFET Flag Junction field-effect transistor
: MESFET Flag MES field-effect transistor

IC.File String Initial-conditions filename
Unique Flag Append instance name to filename
DefA Real Default Mask Area, (m²)
DefW Real Default Mask Width, (m)
DefL Real Default Mask Length, (m)

Base.Area Real lD BJT base area relative to emitter area
Base.Length Real Real lD BJT base contact length, (µm)
Base.Depth Real lD BJT base contact depth, (µm)

TNom Real Nominal measurement temperature, (°C)

30.13.3 Examples

Normally, a ’numos’ device model is used for MOSFET devices. However, it can be changed
into a bipolar-with-substrate-contact model, by specifying a bipolar structure using the other
cards, and indicating the device-structure type as shown here. The default length is set to 1.0
µm so that when mask area is specified on the element line it can be divided by this default to
obtain the device width.

o p t i o n s b i p o l a r d e f l =1 .0

Specify that a 1D BJT has base area 1/10th that of the emitter, has an effective depth of 0.2 µm
and a length between the internal and external base contacts

o p t i o n s base . a r e a =0 .1 base . d e p t h =0 .2 base . l e n =1 .5

If a circuit contains two instances of a bipolar transistor model named ’q1’ and ’q2’, the fol-
lowing line tells the simulator to look for initial conditions in the ’OP1.q2’, respectively. The
period in the middle of the names is added automatically:

o p t i o n s un i qu e i c . f i l e ="OP1"

30.13.4 See also

numd, nbjt, numos
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30.14 OUTPUT

Identify information to be printed or saved

SYNOPSIS

o u t p u t [ debugging−f l a g s ] [ g e n e r a l−i n f o ] [ saved−s o l u t i o n s ]

30.14.1 DESCRIPTION

The output card is used to control the amount of information that is either presented to or saved
for the user. Three types of information are available. Debugging information is available as
a means to monitor program execution. This is useful during long simulations when one is
unsure about whether the program has become trapped at some stage of the simulation. General
information about a device such as material parameters and resource usage can be obtained.
Finally, information about the internal and external states of a device is available. Since this
data is best interpreted using a post-processor, a facility is available for saving device solutions
in auxiliary output files. Solution filenames are automatically generated by the simulator. If the
named file already exists, the file will be overwritten. A filename unique to a particular circuit
or run can be generated by providing a root filename. This root name will be added onto the
beginning of the automatically generated name. This feature can be used to store solutions in
a directory other than the current one by specifying the root filename as the path of the desired
directory. Solutions are only saved for those devices that specify the ‘save’ parameter on their
instance lines.

The various physical values that can be saved are named below. By default, the following values
are saved: the doping, the electron and hole concentrations, the potential, the electric field, the
electron and hole current densities, and the displacement current density. Values can be added
to or deleted from this list by turning the appropriate flag on or off. For vector-valued quantities
in two dimensions, both the X and Y components are saved. The vector magnitude can be
obtained during post-processing.

Saved solutions can be used in conjunction with the options card and instance lines to reuse
previously calculated solutions as initial guesses for new solutions.For example, it is typical to
initialize the device to a known state prior to beginning any DC transfer curve or operating point
analysis. This state is an ideal candidate to be saved for later use when it is known that many
analyses will be performed on a particular device structure.



500 CHAPTER 30. CIDER USER’S MANUAL

30.14.2 Parameters

Name Type Description
All.Debug Flag Debug all analyses
OP.Debug Flag .OP analyses
DC.Debug Flag .DC analyses

TRAN.Debug Flag .TRAN analyses
AC.Debug Flag .AC analyses
PZ.Debug Flag .PZ analyses
Material Flag Physical material information

Statistics | Resources Flag Resource usage information
RootFile String Root of output file names

Psi Flag Potential ( V )
Equ.Psi Flag Equilibrium potential ( V )
Vac.Psi Flag Vacuum potential ( V )
Doping Flag Net doping ( cm³ )
N.Conc Flag Electron concentration ( cm³ )
P.Conc Flag Hole concentration ( cm³ )
PhiN Flag Electron quasi-fermi potential ( V )
PhiP Flag Hole quasi-fermi potential ( V )
PhiC Flag Conduction band potential ( V )
PhiV Flag Valence band potential ( V )

E.Field Flag Electric field ( V/cm )
JC Flag Conduction current density ( A/cm² )
JD Flag Displacement current density ( A/cm² )
JN Flag Electron current density ( A/cm² )
JP Flag Hole current density ( A/cm² )
JT Flag Total current density ( A/cm² )

Unet Flag Net recombination ( 1/cm³ s )
MuN Flag Electron mobility (low-field) ( cm²/Vs )
MuP Flag Hole mobility (low-field) ( cm²/Vs )

30.14.3 Examples

The following example activates all potentially valuable diagnostic output:

o u t p u t a l l . debug mate r s t a t

Energy band diagrams generally contain the potential, the quasi-fermi levels, the energies and
the vacuum energy. The following example enables saving of the r values needed to make
energy band diagrams:

o u t p u t ph in ph jp p h i c ph iv vac . p s i

Sometimes it is desirable to save certain key solutions, and then reload them for use in subse-
quent simulations. In such cases only the essential values ( Y, n, and p ) need to be saved. This
example turns off the nonessential default values (and indicates the essential ones explicitly):
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o u t p u t p s i n . conc p . conc ^ e . f ^ j n ^ j p ^ j d

30.14.4 SEE ALSO

options, numd, nbjt, numos

30.15 TITLE

Provide a label for this device’s output

SYNOPSIS

t i t l e [ t e x t ]

30.15.1 DESCRIPTION

The title card provides a label for use as a heading in various output files. The text can be any
length, but titles that fit on a single line will produce more aesthetically pleasing output.

30.15.2 EXAMPLES

Set the title for a minimum gate length NMOSFET in a 1.0µm BiCMOS process

t i t l e L=1 .0um NMOS Device , 1 . 0um BiCMOS P r o c e s s

30.15.3 BUGS

The title is currently treated like a comment.

30.16 X.MESH, Y.MESH

Define locations of lines and nodes in a mesh

SYNOPSIS

x . mesh p o s i t i o n numbering−method [ s p a c i n g−p a r a m e t e r s ]
y . mesh p o s i t i o n numbering−method [ s p a c i n g−p a r a m e t e r s ]



502 CHAPTER 30. CIDER USER’S MANUAL

30.16.1 DESCRIPTION

The domains of a device are discretized onto a rectangular finite-difference mesh using x.mesh
cards for 1D devices, or x.mesh and y.mesh cards for 2D devices. Both uniform and non-
uniform meshes can be specified.

A typical mesh for a 2D device is shown in Figure 30.3.

Figure 30.3: Typical mesh for 2D devices

The mesh is divided into intervals by the reference lines. The other lines in each interval are
automatically generated by CIDER using the mesh spacing parameters. In general, each new
mesh card adds one reference line and multiple automatic lines to the mesh. Conceptually, a 1D
mesh is similar to a 2D mesh except that there are no reference or automatic lines needed in the
second dimension.

The location of a reference line in the mesh must either be given explicitly (using Location) or
defined implicitly relative to the location of the previous reference line (by using Width). (If the
first card in either direction is specified using Width, an initial reference line is automatically
generated at location 0.0.) The line number of the reference line can be given explicitly, in
which case the automatic lines are evenly spaced within the interval, and the number of lines
is determined from the difference between the current line number and that of the previous
reference line. However, if the interval width is given, then the line number is interpreted
directly as the number of additional lines to add to the mesh.

For a nonuniformly spaced interval, the number of automatic lines has to be determined using
the mesh spacing parameters. Nonuniform spacing is triggered by providing a desired ratio for
the lengths of the spaces between adjacent pairs of lines. This ratio should always be greater
than one, indicating the ratio of larger spaces to smaller spaces. In addition to the ratio, one
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or both of the space widths at the ends of the interval must be provided. If only one is given,
it will be the smallest space and the largest space will be at the opposite end of the interval.
If both are given, the largest space will be in the middle of the interval. In certain cases it is
desirable to limit the growth of space widths in order to control the solution accuracy. This can
be accomplished by specifying a maximum space size, but this option is only available when
one of the two end lengths is given. Note that once the number of new lines is determined
using the desired ratio, the actual spacing ratio may be adjusted so that the spaces exactly fill
the interval.

30.16.2 Parameters

Name Type Description
Location Real Location of this mesh line, ( µm )
:Width Real Width between this and previous mesh lines, ( µm )

Number | Node Integer Number of this mesh line
:Ratio Real Ratio of sizes of adjacent spaces

H.Start | H1 Real Space size at start of interval, ( µm )
H.End | H2 Real Space size at end of interval, ( µm )
H.Max | H3 Real Maximum space size inside interval, ( µm )

30.16.3 EXAMPLES

A 50 node, uniform mesh for a 5 µm long semiconductor resistor can be specified as:

x . mesh l o c =0 .0 n=1
x . mesh l o c =5 .0 n=50

An accurate mesh for a 1D diode needs fine spacing near the junction. In this example, the junc-
tion is assumed to be 0.75 µm deep. The spacing near the diode ends is limited to a maximum
of 0.1 µm:

x . mesh w=0.75 h . e =0 .001 h .m=0 . l r a t i o =1 .5
x . mesh w=2.25 h . s =0 .001 h .m=0 . l r a t i o =1 .5

The vertical mesh spacing of a MOSFET can generally be specified as uniform through the gate
oxide, very fine for the surface inversion layer, moderate down to the so source/drain junction
depth, and then increasing all the way to the bulk contact:

y . mesh l o c =−0.04 node =1
y . mesh l o c =0 .0 node =6
y . mesh wid th =0 .5 h . s t a r t =0 .001 h . max = .05 r a t i o =2 .0
y . mesh wid th =2 .5 h . s t a r t =0 .05 r a t i o =2 .0

30.16.4 SEE ALSO

domain
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30.17 NUMD

Diode / two-terminal numerical models and elements

SYNOPSIS Model:

.MODEL model−name NUMD [ l e v e l ]
+ . . .

SYNOPSIS Element:

DXXXXXXX n l n2 model−name [ geomet ry ] [ t e m p e r a t u r e ] [ i n i t i a l −c o n d i t i o n s ]

SYNOPSIS Output:

. SAVE [ smal l−s i g n a l v a l u e s ]

30.17.1 DESCRIPTION

NUMD is the name for a diode numerical model. In addition, this same model can be used
to simulate other two-terminal structures such as semiconductor resistors and MOS capacitors.
See the options card for more information on how to customize the device type.

Both 1D and 2D devices are supported. These correspond to the LEVEL=l and LEVEL=2
models, respectively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical two-terminal element names begin with the letter ‘D. The element name is then
followed by the names of the positive (n1) and negative (n2) nodes. After this must come the
name of the model used for the element. The remaining information can come in any order. The
layout dimensions of an element are specified relative to the geometry of a default device. For
1D devices, the default device has an area of 1m², and for 2D devices, the default device has
a width of 1 m. However, these defaults can be overridden on an options card. The operating
temperature of a device can be set independently from that of the rest of the circuit in order to
simulate non-isothermal circuit operation. Finally, the name of a file containing an initial state
for the device can be specified. Remember that if the filename contains capital letters, they
must be protected by surrounding the filename with double quotes. Alternatively, the device
can be placed in an OFF state (thermal equilibrium) at the beginning of the analysis. For more
information on the use of initial conditions, see the NGSPICE User’s Manual, chapt. 7.1.

In addition to the element input parameters, there are output-only parameters that can be shown
using the NGSPICE show command (17.5.64) or captured using the save/.SAVE (17.5.55/15.6.1)
command. These parameters are the elements of the indefinite conductance (G), capacitance
(C), and admittance (Y) matrices where Y = G+ jωC. By default, the parameters are com-
puted at 1 Hz. Each element is accessed using the name of the matrix (g, c or y) followed by
the node indices of the output terminal and the input terminal (e.g. g11). Beware that names are
case-sensitive for save/show, so lower-case letters must be used.
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30.17.2 Parameters

Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor

Temp Real Element operating temperature
IC.File String Initial-conditions filename

Off Flag Device initially in OFF state
gIJ Flag Conductance element Gi j, ( Ω )
cIJ Flag Capacitance element Ci j, ( F )
yIJ Flag Admittance element Yi j, ( Ω )

30.17.3 EXAMPLES

A one-dimensional numerical switching-diode element/model pair with an area twice that of
the default device (which has a size of l µm x 1 µm) can be specified using:

DSWITCH 1 2 M_SWITCH_DIODE AREA=2
.MODEL M_SWITCH_DIODE NUMD
+ o p t i o n s d e f a =1p . . .
+ . . .

A two-dimensional two-terminal MOS capacitor with a width of 20 µm and an initial condition
of 3 V is created by:

DMOSCAP 11 12 M_MOSCAP W=20um IC=3v
.MODEL M_MOSCAP NUMD LEVEL=2
+ o p t i o n s moscap defw=1m
+ . . .

The next example shows how both the width and area factors can be used to create a power
diode with area twice that of a 6µm-wide device (i.e. a 12µm-wide device). The device is
assumed to be operating at a temperature of 100°C:

D1 POSN NEGN POWERMOD AREA=2 W=6um TEMP=100.0
.MODEL POWERMOD NUMD LEVEL=2
+ . . .

This example saves all the small-signal parameters of the previous diode:

. SAVE @d1[ g11 ] @d1[ g12 ] @d1[ g21 ] @d1[ g22 ]

. SAVE @d1[ c11 ] @d1[ c12 ] @d1[ c21 ] @d1[ c22 ]

. SAVE @d1[ y11 ] @d1[ y12 ] @d1[ y21 ] @d1[ y22 ]
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30.17.4 SEE ALSO

options, output

30.17.5 BUGS

Convergence problems may be experienced when simulating MOS capacitors due to singulari-
ties in the current-continuity equations.

30.18 NBJT

Bipolar / three-terminal numerical models and elements

SYNOPSIS Model:

.MODEL model−name NBJT [ l e v e l ]
+ . . .

SYNOPSIS Element:

QXXXXXXX n l n2 n3 model−name [ geomet ry ]
+ [ t e m p e r a t u r e ] [ i n i t i a l −c o n d i t i o n s ]

SYNOPSIS Output:

. SAVE [ smal l−s i g n a l v a l u e s ]

30.18.1 DESCRIPTION

NBJT is the name for a bipolar transistor numerical model. In addition, the 2D model can be
used to simulate other three-terminal structures such as a JFET or MESFET. However, the 1D
model is customized with a special base contact, and cannot be used for other purposes. See the
options card for more information on how to customize the device type and setup the 1D base
contact.

Both 1”and 2D devices are supported. These correspond to the LEVEL=l and models, respec-
tively. If left unspecified, it is assumed that the device is one-dimensional.

All numerical three-terminal element names begin with the letter ’Q’. If the device is a bipolar
transistor, then the nodes are specified in the order: collector (nl), base (n2), emitter (n3). For
a JFET or MESFET, the node order is: drain (n1), gate (n2), source (n3). After this must come
the name of the model used for the element. The remaining information can come in any order.
The layout dimensions of an element are specified relative to the geometry of a default device.
For the 1D BJT, the default device has an area of lm², and for 2D devices, the default device has
a width of lm. In addition, it is assumed that the default 1D BJT has a base contact with area
equal to the emitter area, length of 1µm and a depth automatically determined from the device
doping profile. However, all these defaults can be overridden on an options card.

The operating temperature of a device can be set independently from the rest of that of the circuit
in order to simulate non-isothermal circuit operation. Finally, the name of a file containing an
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initial state for the device can be specified. Remember that if the filename contains capital
letters, they must be protected by surrounding the filename with double quotes. Alternatively,
the device can be placed in an OFF state (thermal equilibrium) at the beginning of the analysis.
For more information on the use of initial conditions, see the NGSPICE User’s Manual.

In addition to the element input parameters, there are output-only parameters that can be shown
using the SPICE show command or captured using the save/.SAVE command. These param-
eters are the elements of the indefinite conductance (G), capacitance (C), and admittance (Y)
matrices where Y = G +jwC. By default, the parameters are computed at 1Hz. Each element
is accessed using the name of the matrix (g, c or y) followed by the node indices of the output
terminal and the input terminal (e.g. g11). Beware that parameter names are case-sensitive for
save/show, so lower-case letters must be used.

30.18.2 Parameters

Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor

Temp Real Element operating temperature
IC.File String Initial-conditions filename

Off Flag Device initially in OFF state
gIJ Flag Conductance element Gi j, ( Ω )
cIJ Flag Capacitance element Ci j, ( F )
yIJ Flag Admittance element Yi j, ( Ω )

30.18.3 EXAMPLES

A one-dimensional numerical bipolar transistor with an emitter stripe 4 times as wide as the
default device is created using:

Q2 1 2 3 M_BJT AREA=4

This example saves the output conductance (go), transconductance (gm) and input conductance
(gpi) of the previous transistor in that order:

. SAVE @q2[ g11 ] @q2[ g12 ] @q2[ g22 ]

The second example is for a two-dimensional JFET with a width of 5pm and initial conditions
obtained from file "IC.jfet":

QJ1 11 12 13 M_JFET W=5um IC . FILE =" IC . j f e t "
.MODEL M_JFET NBJT LEVEL=2
+ o p t i o n s j f e t
+ . . .
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A final example shows how to use symmetry to simulate half of a 2D BJT, avoiding having the
user double the area of each instance:

Q2 NC2 NB2 NE2 BJTMOD AREA=1
Q3 NC3 NB3 NE3 BJTMOD AREA=1
.MODEL BJTMOD NBJT LEVEL=2
+ o p t i o n s defw=2um
+ * D ef in e h a l f o f t h e d e v i c e now
+ . . .

30.18.4 SEE ALSO

options, output

30.18.5 BUGS

MESFETs cannot be simulated properly yet because Schottky contacts have not been imple-
mented.

30.19 NUMOS

MOSFET / four-terminal numerical models and elements

SYNOPSIS Model:

.MODEL model−name NUMOS [ l e v e l ]
+ . . .

SYNOPSIS Element:

MXXXXXXX n l n2 n3 n4 model−name [ geomet ry ]
+ [ t e m p e r a t u r e ] [ i n i t i a l −c o n d i t i o n s ]

SYNOPSIS Output:

. SAVE [ smal l−s i g n a l v a l u e s ]

30.19.1 DESCRIPTION

NUMOS is the name for a MOSFET numerical model. In addition, the 2D model can be used
to simulate other four-terminal structures such as integrated bipolar and JFET devices with
substrate contacts. However, silicon controlled rectifiers (SCRs) cannot be simulated because
of the snapback in the transfer characteristic. See the options card for more information on
how to customize the device type. The LEVEL parameter of two- and three-terminal devices is
not needed, because only 2D devices are supported. However, it will accepted and ignored if
provided.
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All numerical four-terminal element names begin with the letter ‘M’. If the device is a MOSFET,
or JFET with a bulk contact, then the nodes are specified in the order: drain (n1), gate (n2),
source (n3), bulk (n4). If the device is a BJT, the node order is: collector (n1), base (n2),
emitter (n3), substrate (n4). After this must come the name of the model 1used for the element.
The remaining information can come in any order. The layout dimensions of an element are
specified relative to the geometry of a default device. The default device has a width of lm.
However, this default can be overridden on an options card. In addition, the element line will
accept a length parameter, L, but does not use it in any calculations. This is provided to enable
somewhat greater compatibility between numerical MOSFET models and the standard SPICE3
compact MOSFET models.

The operating temperature of a device can be set independently from that of the rest of the circuit
in order to simulate non-isothermal circuit operation. Finally, the name of a file containing an
initial state for the device can be specified. Remember that if the filename contains capital
letters, they must be protected by surrounding the filename with double quotes. Alternatively,
the device can be placed in an OFF state (thermal equilibrium) at the beginning of the analysis.
For more information on the use of initial conditions, see the NGSPICE User’s Manual.

In addition to the element input parameters, there are output-only parameters that can be shown
using the SPICE show command or captured using the save/.SAVE command.

These parameters are the elements of the indefinite conductance (G), capacitance (C), and ad-
mittance (Y) matrices where Y = G+jwC. By default, the parameters are computed at 1 Hz.
Each element is accessed using the name of the matrix (g, c or y) followed by the node indices
of the output terminal and the input terminal (e.g. g11). Beware that parameter names are
case-sensitive for save/show, so lower-case letters must be used.

30.19.2 Parameters

Name Type Description
Level Integer Dimensionality of numerical model
Area Real Multiplicative area factor
W Real Multiplicative width factor
L Real Unused length factor

Temp Real Element operating temperature
IC.File String Initial-conditions filename

Off Flag Device initially in OFF state
gIJ Flag Conductance element Gi j, ( Ω )
cIJ Flag Capacitance element Ci j, ( F )
yIJ Flag Admittance element Yi j, ( Ω )

30.19.3 EXAMPLES

A numerical MOSFET with a gate width of 5µm and length of 1µm is described below. How-
ever, the model can only be used for lµm length devices, so the length parameter is redundant.
The device is initially biased near its threshold by taking an initial state from the file "NM1.vth".
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M1 1 2 3 4 M_NMOS_1UM W=5um L=1um IC . FILE ="NM1. v t h "
.MODEL MNMOS_1UM NUMOS
+ * D e s c r i p t i o n o f a lum d e v i c e
+ . . .

This example saves the definite admittance matrix of the previous MOSFET where the source
terminal (3) is used as the reference. (The definite admittance matrix is formed by deleting the
third row and column from the indefinite admittance matrix.)

. SAVE @m1[ y11 ] @m1[ y12 ] @ml[ y14 ]

. SAVE @m1[ y21 ] @m1[ y22 ] @ml[ y24 ]

. SAVE @m1[ y41 ] @m1[ y42 ] @ml[ y44 ]

Bipolar transistors are usually specified in terms of their area relative to a unit device. The
following example creates a unit-sized device:

MQ1 NC NB NE NS N_BJT
.MODEL M_BJT NUMOS LEVEL=2
+ o p t i o n s b i p o l a r defw=5um
+ . . .

30.19.4 SEE ALSO

options, output

30.20 Cider examples

The original Cider User’s manual, in its Appendix A, lists a lot of examples, starting at page
226. We do not reproduce these pages here, but ask you to refer to the original document. If
you experience any difficulties downloading it, please send a note to the ngspice users’ mailing
list.

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2382.html
http://sourceforge.net/mailarchive/forum.php?forum_name=ngspice-users
http://sourceforge.net/mailarchive/forum.php?forum_name=ngspice-users
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Chapter 31

Model and Device Parameters

The following tables summarize the parameters available on each of the devices and models in
ngspice. There are two tables for each type of device supported by ngspice. Input parameters
to instances and models are parameters that can occur on an instance or model definition line in
the form keyword=value where keyword is the parameter name as given in the tables. Default
input parameters (such as the resistance of a resistor or the capacitance of a capacitor) obviously
do not need the keyword specified.

31.1 Accessing internal device parameters

Output parameters are those additional parameters which are available for many types of in-
stances for the output of operating point and debugging information. These parameters are
specified as @device[keyword] and are available for the most recent point computed or, if
specified in a .save statement, for an entire simulation as a normal output vector. Thus, to
monitor the gate-to-source capacitance of a MOSFET, a command

save @m1[ cgs ]

given before a transient simulation causes the specified capacitance value to be saved at each
time-point, and a subsequent command such as

p l o t @m1[ cgs ]

produces the desired plot. (Note that the show command does not use this format).

Some variables are listed as both input and output, and their output simply returns the previously
input value, or the default value after the simulation has been run. Some parameters are input
only because the output system can not handle variables of the given type yet, or the need for
them as output variables has not been apparent. Many such input variables are available as
output variables in a different format, such as the initial condition vectors that can be retrieved
as individual initial condition values. Finally, internally derived values are output only and are
provided for debugging and operating point output purposes.

If you want to access a device parameter of a device used inside of a subcircuit, you may use
the syntax as shown below.
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General form:

@ d e v i c e _ i d e n t i f i e r . s u b c i r c u i t _ n a m e . < s u b c i r c u i t _ n a m e _ n n >
+ . device_name [ p a r a m e t e r ]

Example input file:

* t r a n s i s t o r o u t p u t c h a r a c t e r i s t i c s
* two n e s t e d s u b c i r c u i t s
vdd d1 0 2 . 0
v s s v s s s 0 0
v s i g g1 v s s s 0
xmos1 d1 g1 v s s s l e v e l 1
. s u b c k t l e v e l 1 d3 g3 v3
xmos2 d3 g3 v3 l e v e l 2
. ends
. s u b c k t l e v e l 2 d4 g4 v4
m1 d4 g4 v4 v4 nmos w=1e−5 l =3 .5 e−007
. ends
. dc vdd 0 5 0 . 1 v s i g 0 5 1
. c o n t r o l
s ave a l l @m. xmos1 . xmos2 . m1[ v d s a t ]
run
p l o t v s s # b r a nc h $ c u r r e n t measured a t t h e t o p l e v e l
p l o t @m. xmos1 . xmos2 . m1[ v d s a t ]
. endc
.MODEL NMOS NMOS LEVEL = 8
+VERSION = 3 . 2 . 4 TNOM = 27 TOX = 7 . 4 E−9
. end

The device identifier is the first letter extracted from the device name, e.g. m for a MOS tran-
sistor.

Please note that the parameter tables presented below do not provide the detailed information
available about the parameters provided in the section on each device and model, but are pro-
vided as a quick reference guide.
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31.2 Elementary Devices

31.2.1 Resistor

31.2.1.1 Resistor instance parameters

# Name Direction Type Description
1 resistance InOut real Resistance

10 ac InOut real AC resistance value
8 temp InOut real Instance operating temperature

14 dtemp InOut real Instance temperature difference
with the rest of the circuit

3 l InOut real Length
2 w InOut real Width

12 m InOut real Multiplication factor
16 tc InOut real First order temp. coefficient
16 tc1 InOut real First order temp. coefficient
17 tc2 InOut real Second order temp. coefficient
13 scale InOut real Scale factor
15 noisy InOut integer Resistor generate noise
5 sens_resist In flag flag to request sensitivity WRT

resistance
6 i Out real Current
7 p Out real Power

206 sens_dc Out real dc sensitivity
201 sens_real Out real dc sensitivity and real part of ac

sensitivity
202 sens_imag Out real dc sensitivity and imag part of ac

sensitivity
203 sens_mag Out real ac sensitivity of magnitude
204 sens_ph Out real ac sensitivity of phase
205 sens_cplx Out complex ac sensitivity
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31.2.1.2 Resistor model parameters

# Name Direction Type Description
103 rsh InOut real Sheet resistance
106 narrow InOut real Narrowing of resistor
106 dw InOut real
109 short InOut real Shortening of resistor
109 dlr InOut real
101 tc1 InOut real First order temp. coefficient
102 tc2 InOut real Second order temp. coefficient
104 defw InOut real Default device width
104 w InOut real Default device width
105 l InOut real Default device length
110 kf InOut real Flicker noise coefficient
111 af InOut real Flicker noise exponent
108 tnom InOut real Parameter measurement temperature
107 r InOut real Resistance
107 res InOut real Resistance

r In flag Device is a resistor model
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31.2.2 Capacitor - Fixed capacitor

31.2.2.1 Capacitor instance parameters

# Name Direction Type Description
1 capacitance InOut real Device capacitance
1 cap InOut real Device capacitance
1 c InOut real Device capacitance
2 ic InOut real Initial capacitor voltage
8 temp InOut real Instance operating temperature
9 dtemp InOut real Instance temperature difference

from the rest of the circuit
3 w InOut real Device width
4 l InOut real Device length

11 m InOut real Parallel multiplier
10 scale InOut real Scale factor
5 sens_cap In flag flag to request sens. WRT cap.
6 i Out real Device current
7 p Out real Instantaneous device power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real dc sens. & imag part of ac sens.
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

31.2.2.2 Capacitor model parameters

# Name Direction Type Description
112 cap InOut real Model capacitance
101 cj InOut real Bottom Capacitance per area
102 cjsw InOut real Sidewall capacitance per meter
103 defw InOut real Default width
113 defl InOut real Default length
105 narrow InOut real width correction factor
106 short InOut real length correction factor
107 tc1 InOut real First order temp. coefficient
108 tc2 InOut real Second order temp. coefficient
109 tnom InOut real Parameter measurement temperature
110 di InOut real Relative dielectric constant
111 thick InOut real Insulator thickness
104 c In flag Capacitor model
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31.2.3 Inductor - Fixed inductor

31.2.3.1 Inductor instance parameters

# Name Direction Type Description
1 inductance InOut real Inductance of inductor
2 ic InOut real Initial current through inductor
5 sens_ind In flag flag to request sensitivity WRT

inductance
9 temp InOut real Instance operating temperature

10 dtemp InOut real Instance temperature difference with the
rest of the circuit

8 m InOut real Multiplication Factor
11 scale InOut real Scale factor
12 nt InOut real Number of turns
3 flux Out real Flux through inductor
4 v Out real Terminal voltage of inductor
4 volt Out real
6 i Out real Current through the inductor
6 current Out real
7 p Out real instantaneous power dissipated by the

inductor
206 sens_dc Out real dc sensitivity sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real dc sensitivity and imag part of ac

sensitivty
203 sens_mag Out real sensitivity of AC magnitude
204 sens_ph Out real sensitivity of AC phase
205 sens_cplx Out complex ac sensitivity

31.2.3.2 Inductor model parameters

# Name Direction Type Description
100 ind InOut real Model inductance
101 tc1 InOut real First order temp. coefficient
102 tc2 InOut real Second order temp. coefficient
103 tnom InOut real Parameter measurement temperature
104 csect InOut real Inductor cross section
105 length InOut real Inductor length
106 nt InOut real Model number of turns
107 mu InOut real Relative magnetic permeability
108 l In flag Inductor model
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31.2.4 Mutual - Mutual Inductor

31.2.4.1 Mutual instance parameters

# Name Direction Type Description
401 k InOut real Mutual inductance
401 coefficient InOut real
402 inductor1 InOut instance First coupled inductor
403 inductor2 InOut instance Second coupled inductor
404 sens_coeff In flag flag to request sensitivity WRT coupling factor
606 sens_dc Out real dc sensitivity
601 sens_real Out real real part of ac sensitivity
602 sens_imag Out real dc sensitivity and imag part of ac sensitivty
603 sens_mag Out real sensitivity of AC magnitude
604 sens_ph Out real sensitivity of AC phase
605 sens_cplx Out complex mutual model parameters:
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31.3 Voltage and current sources

31.3.1 ASRC - Arbitrary source

31.3.1.1 ASRC instance parameters

# Name Direction Type Description
2 i In parsetree Current source
1 v In parsetree Voltage source
7 i Out real Current through source
6 v Out real Voltage across source
3 pos_node Out integer Positive Node
4 neg_node Out integer Negative Node



31.3. VOLTAGE AND CURRENT SOURCES 521

31.3.2 Isource - Independent current source

31.3.2.1 Isource instance parameters

# Name Direction Type Description
1 dc InOut real DC value of source
2 acmag InOut real AC magnitude
3 acphase InOut real AC phase
5 pulse In real vector Pulse description
6 sine In real vector Sinusoidal source description
6 sin In real vector Sinusoidal source description
7 exp In real vector Exponential source description
8 pwl In real vector Piecewise linear description
9 sffm In real vector Single freq. FM description

21 am In real vector Amplitude modulation description
10 neg_node Out integer Negative node of source
11 pos_node Out integer Positive node of source
12 acreal Out real AC real part
13 acimag Out real AC imaginary part
14 function Out integer Function of the source
15 order Out integer Order of the source function
16 coeffs Out real vector Coefficients of the source
20 v Out real Voltage across the supply
17 p Out real Power supplied by the source

4 ac In real vector AC magnitude,phase vector
1 c In real Current through current source

22 current Out real Current in DC or Transient mode
18 distof1 In real vector f1 input for distortion
19 distof2 In real vector f2 input for distortion
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31.3.3 Vsource - Independent voltage source

31.3.3.1 Vsource instance parameters

# Name Direction Type Description
1 dc InOut real D.C. source value
3 acmag InOut real A.C. Magnitude
4 acphase InOut real A.C. Phase
5 pulse In real vector Pulse description
6 sine In real vector Sinusoidal source description
6 sin In real vector Sinusoidal source description
7 exp In real vector Exponential source description
8 pwl In real vector Piecewise linear description
9 sffm In real vector Single freq. FM descripton

22 am In real vector Amplitude modulation descripton
16 pos_node Out integer Positive node of source
17 neg_node Out integer Negative node of source
11 function Out integer Function of the source
12 order Out integer Order of the source function
13 coeffs Out real vector Coefficients for the function
14 acreal Out real AC real part
15 acimag Out real AC imaginary part

2 ac In real vector AC magnitude, phase vector
18 i Out real Voltage source current
19 p Out real Instantaneous power
20 distof1 In real vector f1 input for distortion
21 distof2 In real vector f2 input for distortion
23 r In real pwl repeat start time value
24 td In real pwl delay time value
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31.3.4 CCCS - Current controlled current source

31.3.4.1 CCCS instance parameters

# Name Direction Type Description
1 gain InOut real Gain of source
2 control InOut instance Name of controlling source
6 sens_gain In flag flag to request sensitivity WRT gain
4 neg_node Out integer Negative node of source
3 pos_node Out integer Positive node of source
7 i Out real CCCS output current
9 v Out real CCCS voltage at output
8 p Out real CCCS power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

31.3.5 CCVS - Current controlled voltage source

31.3.5.1 CCVS instance parameters

# Name Direction Type Description
1 gain InOut real Transresistance (gain)
2 control InOut instance Controlling voltage source
7 sens_trans In flag flag to request sens. WRT transimpedance
3 pos_node Out integer Positive node of source
4 neg_node Out integer Negative node of source
8 i Out real CCVS output current

10 v Out real CCVS output voltage
9 p Out real CCVS power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity
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31.3.6 VCCS - Voltage controlled current source

31.3.6.1 VCCS instance parameters

# Name Direction Type Description
1 gain InOut real Transconductance of source (gain)
8 sens_trans In flag flag to request sensitivity WRT transconductance
3 pos_node Out integer Positive node of source
4 neg_node Out integer Negative node of source
5 cont_p_node Out integer Positive node of contr. source
6 cont_n_node Out integer Negative node of contr. source
2 ic In real Initial condition of controlling source
9 i Out real Output current

11 v Out real Voltage across output
10 p Out real Power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity

31.3.7 VCVS - Voltage controlled voltage source

31.3.7.1 VCVS instance parameters

# Name Direction Type Description
1 gain InOut real Voltage gain
9 sens_gain In flag flag to request sensitivity WRT gain
2 pos_node Out integer Positive node of source
3 neg_node Out integer Negative node of source
4 cont_p_node Out integer Positive node of contr. source
5 cont_n_node Out integer Negative node of contr. source
7 ic In real Initial condition of controlling source

10 i Out real Output current
12 v Out real Output voltage
11 p Out real Power

206 sens_dc Out real dc sensitivity
201 sens_real Out real real part of ac sensitivity
202 sens_imag Out real imag part of ac sensitivity
203 sens_mag Out real sensitivity of ac magnitude
204 sens_ph Out real sensitivity of ac phase
205 sens_cplx Out complex ac sensitivity
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31.4 Transmission Lines

31.4.1 CplLines - Simple Coupled Multiconductor Lines

31.4.1.1 CplLines instance parameters

# Name Direction Type Description
1 pos_nodes InOut string vector in nodes
2 neg_nodes InOut string vector out nodes
3 dimension InOut integer number of coupled lines
4 length InOut real length of lines

31.4.1.2 CplLines model parameters

# Name Direction Type Description
101 r InOut real vector resistance per length
104 l InOut real vector inductance per length
102 c InOut real vector capacitance per length
103 g InOut real vector conductance per length
105 length InOut real length
106 cpl In flag Device is a cpl model
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31.4.2 LTRA - Lossy transmission line

31.4.2.1 LTRA instance parameters

# Name Direction Type Description
6 v1 InOut real Initial voltage at end 1
8 v2 InOut real Initial voltage at end 2
7 i1 InOut real Initial current at end 1
9 i2 InOut real Initial current at end 2

10 ic In real vector Initial condition vector:v1,i1,v2,i2
13 pos_node1 Out integer Positive node of end 1 of t-line
14 neg_node1 Out integer Negative node of end 1 of t.line
15 pos_node2 Out integer Positive node of end 2 of t-line
16 neg_node2 Out integer Negative node of end 2 of t-line

31.4.2.2 LTRA model parameters

# Name Direction Type Description
0 ltra InOut flag LTRA model
1 r InOut real Resistance per meter
2 l InOut real Inductance per meter
3 g InOut real
4 c InOut real Capacitance per meter
5 len InOut real length of line

11 rel Out real Rel. rate of change of deriv. for bkpt
12 abs Out real Abs. rate of change of deriv. for bkpt
28 nocontrol InOut flag No timestep control
32 steplimit InOut flag always limit timestep to 0.8*(delay of line)
33 nosteplimit InOut flag don’t always limit timestep to 0.8*(delay of

line)
34 lininterp InOut flag use linear interpolation
35 quadinterp InOut flag use quadratic interpolation
36 mixedinterp InOut flag use linear interpolation if quadratic results look

unacceptable
46 truncnr InOut flag use N-R iterations for step calculation in

LTRAtrunc
47 truncdontcut InOut flag don’t limit timestep to keep impulse response

calculation errors low
42 compactrel InOut real special reltol for straight line checking
43 compactabs InOut real special abstol for straight line checking
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31.4.3 Tranline - Lossless transmission line

31.4.3.1 Tranline instance parameters

# Name Direction Type Description
1 z0 InOut real Characteristic impedance
1 zo InOut real
4 f InOut real Frequency
2 td InOut real Transmission delay
3 nl InOut real Normalized length at frequency given
5 v1 InOut real Initial voltage at end 1
7 v2 InOut real Initial voltage at end 2
6 i1 InOut real Initial current at end 1
8 i2 InOut real Initial current at end 2
9 ic In real vector Initial condition vector:v1,i1,v2,i2

10 rel Out real Rel. rate of change of deriv. for bkpt
11 abs Out real Abs. rate of change of deriv. for bkpt
12 pos_node1 Out integer Positive node of end 1 of t. line
13 neg_node1 Out integer Negative node of end 1 of t. line
14 pos_node2 Out integer Positive node of end 2 of t. line
15 neg_node2 Out integer Negative node of end 2 of t. line
18 delays Out real vector Delayed values of excitation
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31.4.4 TransLine - Simple Lossy Transmission Line

31.4.4.1 TransLine instance parameters

# Name Direction Type Description
1 pos_node In integer Positive node of txl
2 neg_node In integer Negative node of txl
3 length InOut real length of line

31.4.4.2 TransLine model parameters

# Name Direction Type Description
101 r InOut real resistance per length
104 l InOut real inductance per length
102 c InOut real capacitance per length
103 g InOut real conductance per length
105 length InOut real length
106 txl In flag Device is a txl model
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31.4.5 URC - Uniform R. C. line

31.4.5.1 URC instance parameters

# Name Direction Type Description
1 l InOut real Length of transmission line
2 n InOut real Number of lumps
3 pos_node Out integer Positive node of URC
4 neg_node Out integer Negative node of URC
5 gnd Out integer Ground node of URC

31.4.5.2 URC model parameters

# Name Direction Type Description
101 k InOut real Propagation constant
102 fmax InOut real Maximum frequency of interest
103 rperl InOut real Resistance per unit length
104 cperl InOut real Capacitance per unit length
105 isperl InOut real Saturation current per length
106 rsperl InOut real Diode resistance per length
107 urc In flag Uniform R.C. line model
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31.5 BJTs

31.5.1 BJT - Bipolar Junction Transistor

31.5.1.1 BJT instance parameters

# Name Direction Type Description
2 off InOut flag Device initially off
3 icvbe InOut real Initial B-E voltage
4 icvce InOut real Initial C-E voltage
1 area InOut real (Emitter) Area factor

10 areab InOut real Base area factor
11 areac InOut real Collector area factor
9 m InOut real Parallel Multiplier
5 ic In real vector Initial condition vector
6 sens_area In flag flag to request sensitivity WRT area

202 colnode Out integer Number of collector node
203 basenode Out integer Number of base node
204 emitnode Out integer Number of emitter node
205 substnode Out integer Number of substrate node
206 colprimenode Out integer Internal collector node
207 baseprimenode Out integer Internal base node
208 emitprimenode Out integer Internal emitter node
211 ic Out real Current at collector node
212 ib Out real Current at base node
236 ie Out real Emitter current
237 is Out real Substrate current
209 vbe Out real B-E voltage
210 vbc Out real B-C voltage
215 gm Out real Small signal transconductance
213 gpi Out real Small signal input conductance - pi
214 gmu Out real Small signal conductance - mu
225 gx Out real Conductance from base to internal base
216 go Out real Small signal output conductance
227 geqcb Out real d(Ibe)/d(Vbc)
228 gccs Out real Internal C-S cap. equiv. cond.
229 geqbx Out real Internal C-B-base cap. equiv. cond.
239 cpi Out real Internal base to emitter capactance
240 cmu Out real Internal base to collector capactiance
241 cbx Out real Base to collector capacitance
242 ccs Out real Collector to substrate capacitance
218 cqbe Out real Cap. due to charge storage in B-E jct.
220 cqbc Out real Cap. due to charge storage in B-C jct.
222 cqcs Out real Cap. due to charge storage in C-S jct.
224 cqbx Out real Cap. due to charge storage in B-X jct.
226 cexbc Out real Total Capacitance in B-X junction
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217 qbe Out real Charge storage B-E junction
219 qbc Out real Charge storage B-C junction
221 qcs Out real Charge storage C-S junction
223 qbx Out real Charge storage B-X junction
238 p Out real Power dissipation
235 sens_dc Out real dc sensitivity
230 sens_real Out real real part of ac sensitivity
231 sens_imag Out real dc sens. & imag part of ac sens.
232 sens_mag Out real sensitivity of ac magnitude
233 sens_ph Out real sensitivity of ac phase
234 sens_cplx Out complex ac sensitivity

7 temp InOut real instance temperature
8 dtemp InOut real instance temperature delta from circuit

31.5.1.2 BJT model parameters

# Name Direction Type Description
309 type Out string NPN or PNP
101 npn InOut flag NPN type device
102 pnp InOut flag PNP type device
103 is InOut real Saturation Current
104 bf InOut real Ideal forward beta
105 nf InOut real Forward emission coefficient
106 vaf InOut real Forward Early voltage
106 va InOut real
107 ikf InOut real Forward beta roll-off corner current
107 ik InOut real
108 ise InOut real B-E leakage saturation current
110 ne InOut real B-E leakage emission coefficient
111 br InOut real Ideal reverse beta
112 nr InOut real Reverse emission coefficient
113 var InOut real Reverse Early voltage
113 vb InOut real
114 ikr InOut real reverse beta roll-off corner current
115 isc InOut real B-C leakage saturation current
117 nc InOut real B-C leakage emission coefficient
118 rb InOut real Zero bias base resistance
119 irb InOut real Current for base resistance=(rb+rbm)/2
120 rbm InOut real Minimum base resistance
121 re InOut real Emitter resistance
122 rc InOut real Collector resistance
123 cje InOut real Zero bias B-E depletion capacitance
124 vje InOut real B-E built in potential
124 pe InOut real
125 mje InOut real B-E junction grading coefficient
125 me InOut real
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126 tf InOut real Ideal forward transit time
127 xtf InOut real Coefficient for bias dependence of TF
128 vtf InOut real Voltage giving VBC dependence of TF
129 itf InOut real High current dependence of TF
130 ptf InOut real Excess phase
131 cjc InOut real Zero bias B-C depletion capacitance
132 vjc InOut real B-C built in potential
132 pc InOut real
133 mjc InOut real B-C junction grading coefficient
133 mc InOut real
134 xcjc InOut real Fraction of B-C cap to internal base
135 tr InOut real Ideal reverse transit time
136 cjs InOut real Zero bias C-S capacitance
136 ccs InOut real Zero bias C-S capacitance
137 vjs InOut real Substrate junction built in potential
137 ps InOut real
138 mjs InOut real Substrate junction grading coefficient
138 ms InOut real
139 xtb InOut real Forward and reverse beta temp. exp.
140 eg InOut real Energy gap for IS temp. dependency
141 xti InOut real Temp. exponent for IS
142 fc InOut real Forward bias junction fit parameter
301 invearlyvoltf Out real Inverse early voltage:forward
302 invearlyvoltr Out real Inverse early voltage:reverse
303 invrollofff Out real Inverse roll off - forward
304 invrolloffr Out real Inverse roll off - reverse
305 collectorconduct Out real Collector conductance
306 emitterconduct Out real Emitter conductance
307 transtimevbcfact Out real Transit time VBC factor
308 excessphasefactor Out real Excess phase fact.
143 tnom InOut real Parameter measurement temperature
145 kf InOut real Flicker Noise Coefficient
144 af InOut real Flicker Noise Exponent
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31.5.2 BJT - Bipolar Junction Transistor Level 2

31.5.2.1 BJT2 instance parameters

# Name Direction Type Description
2 off InOut flag Device initially off
3 icvbe InOut real Initial B-E voltage
4 icvce InOut real Initial C-E voltage
1 area InOut real (Emitter) Area factor

10 areab InOut real Base area factor
11 areac InOut real Collector area factor
9 m InOut real Parallel Multiplier
5 ic In real vector Initial condition vector
6 sens_area In flag flag to request sensitivity WRT area

202 colnode Out integer Number of collector node
203 basenode Out integer Number of base node
204 emitnode Out integer Number of emitter node
205 substnode Out integer Number of substrate node
206 colprimenode Out integer Internal collector node
207 baseprimenode Out integer Internal base node
208 emitprimenode Out integer Internal emitter node
211 ic Out real Current at collector node
212 ib Out real Current at base node
236 ie Out real Emitter current
237 is Out real Substrate current
209 vbe Out real B-E voltage
210 vbc Out real B-C voltage
215 gm Out real Small signal transconductance
213 gpi Out real Small signal input conductance - pi
214 gmu Out real Small signal conductance - mu
225 gx Out real Conductance from base to internal base
216 go Out real Small signal output conductance
227 geqcb Out real d(Ibe)/d(Vbc)
228 gcsub Out real Internal Subs. cap. equiv. cond.
243 gdsub Out real Internal Subs. Diode equiv. cond.
229 geqbx Out real Internal C-B-base cap. equiv. cond.
239 cpi Out real Internal base to emitter capactance
240 cmu Out real Internal base to collector capactiance
241 cbx Out real Base to collector capacitance
242 csub Out real Substrate capacitance
218 cqbe Out real Cap. due to charge storage in B-E jct.
220 cqbc Out real Cap. due to charge storage in B-C jct.
222 cqsub Out real Cap. due to charge storage in Subs. jct.
224 cqbx Out real Cap. due to charge storage in B-X jct.
226 cexbc Out real Total Capacitance in B-X junction
217 qbe Out real Charge storage B-E junction
219 qbc Out real Charge storage B-C junction
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221 qsub Out real Charge storage Subs. junction
223 qbx Out real Charge storage B-X junction
238 p Out real Power dissipation
235 sens_dc Out real dc sensitivity
230 sens_real Out real real part of ac sensitivity
231 sens_imag Out real dc sens. & imag part of ac sens.
232 sens_mag Out real sensitivity of ac magnitude
233 sens_ph Out real sensitivity of ac phase
234 sens_cplx Out complex ac sensitivity

7 temp InOut real instance temperature
8 dtemp InOut real instance temperature delta from circuit

31.5.2.2 BJT2 model parameters

# Name Direction Type Description
309 type Out string NPN or PNP
101 npn InOut flag NPN type device
102 pnp InOut flag PNP type device
147 subs InOut integer Vertical or Lateral device
103 is InOut real Saturation Current
146 iss InOut real Substrate Jct. Saturation Current
104 bf InOut real Ideal forward beta
105 nf InOut real Forward emission coefficient
106 vaf InOut real Forward Early voltage
106 va InOut real
107 ikf InOut real Forward beta roll-off corner current
107 ik InOut real
108 ise InOut real B-E leakage saturation current
110 ne InOut real B-E leakage emission coefficient
111 br InOut real Ideal reverse beta
112 nr InOut real Reverse emission coefficient
113 var InOut real Reverse Early voltage
113 vb InOut real
114 ikr InOut real reverse beta roll-off corner current
115 isc InOut real B-C leakage saturation current
117 nc InOut real B-C leakage emission coefficient
118 rb InOut real Zero bias base resistance
119 irb InOut real Current for base resistance=(rb+rbm)/2
120 rbm InOut real Minimum base resistance
121 re InOut real Emitter resistance
122 rc InOut real Collector resistance
123 cje InOut real Zero bias B-E depletion capacitance
124 vje InOut real B-E built in potential
124 pe InOut real
125 mje InOut real B-E junction grading coefficient
125 me InOut real
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126 tf InOut real Ideal forward transit time
127 xtf InOut real Coefficient for bias dependence of TF
128 vtf InOut real Voltage giving VBC dependence of TF
129 itf InOut real High current dependence of TF
130 ptf InOut real Excess phase
131 cjc InOut real Zero bias B-C depletion capacitance
132 vjc InOut real B-C built in potential
132 pc InOut real
133 mjc InOut real B-C junction grading coefficient
133 mc InOut real
134 xcjc InOut real Fraction of B-C cap to internal base
135 tr InOut real Ideal reverse transit time
136 cjs InOut real Zero bias Substrate capacitance
136 csub InOut real
137 vjs InOut real Substrate junction built in potential
137 ps InOut real
138 mjs InOut real Substrate junction grading coefficient
138 ms InOut real
139 xtb InOut real Forward and reverse beta temp. exp.
140 eg InOut real Energy gap for IS temp. dependency
141 xti InOut real Temp. exponent for IS
148 tre1 InOut real Temp. coefficient 1 for RE
149 tre2 InOut real Temp. coefficient 2 for RE
150 trc1 InOut real Temp. coefficient 1 for RC
151 trc2 InOut real Temp. coefficient 2 for RC
152 trb1 InOut real Temp. coefficient 1 for RB
153 trb2 InOut real Temp. coefficient 2 for RB
154 trbm1 InOut real Temp. coefficient 1 for RBM
155 trbm2 InOut real Temp. coefficient 2 for RBM
142 fc InOut real Forward bias junction fit parameter
301 invearlyvoltf Out real Inverse early voltage:forward
302 invearlyvoltr Out real Inverse early voltage:reverse
303 invrollofff Out real Inverse roll off - forward
304 invrolloffr Out real Inverse roll off - reverse
305 collectorconduct Out real Collector conductance
306 emitterconduct Out real Emitter conductance
307 transtimevbcfact Out real Transit time VBC factor
308 excessphasefactor Out real Excess phase fact.
143 tnom InOut real Parameter measurement temperature
145 kf InOut real Flicker Noise Coefficient
144 af InOut real Flicker Noise Exponent
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31.5.3 VBIC - Vertical Bipolar Inter-Company Model

31.5.3.1 VBIC instance parameters

# Name Direction Type Description
1 area InOut real Area factor
2 off InOut flag Device initially off
3 ic In real vector Initial condition vector
4 icvbe InOut real Initial B-E voltage
5 icvce InOut real Initial C-E voltage
6 temp InOut real Instance temperature
7 dtemp InOut real Instance delta temperature
8 m InOut real Multiplier

212 collnode Out integer Number of collector node
213 basenode Out integer Number of base node
214 emitnode Out integer Number of emitter node
215 subsnode Out integer Number of substrate node
216 collCXnode Out integer Internal collector node
217 collCInode Out integer Internal collector node
218 baseBXnode Out integer Internal base node
219 baseBInode Out integer Internal base node
220 baseBPnode Out integer Internal base node
221 emitEInode Out integer Internal emitter node
222 subsSInode Out integer Internal substrate node
223 vbe Out real B-E voltage
224 vbc Out real B-C voltage
225 ic Out real Collector current
226 ib Out real Base current
227 ie Out real Emitter current
228 is Out real Substrate current
229 gm Out real Small signal transconductance dIc/dVbe
230 go Out real Small signal output conductance dIc/dVbc
231 gpi Out real Small signal input conductance dIb/dVbe
232 gmu Out real Small signal conductance dIb/dVbc
233 gx Out real Conductance from base to internal base
247 cbe Out real Internal base to emitter capacitance
248 cbex Out real External base to emitter capacitance
249 cbc Out real Internal base to collector capacitance
250 cbcx Out real External Base to collector capacitance
251 cbep Out real Parasitic Base to emitter capacitance
252 cbcp Out real Parasitic Base to collector capacitance
259 p Out real Power dissipation
243 geqcb Out real Internal C-B-base cap. equiv. cond.
246 geqbx Out real External C-B-base cap. equiv. cond.
234 qbe Out real Charge storage B-E junction
235 cqbe Out real Cap. due to charge storage in B-E jct.
236 qbc Out real Charge storage B-C junction
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237 cqbc Out real Cap. due to charge storage in B-C jct.
238 qbx Out real Charge storage B-X junction
239 cqbx Out real Cap. due to charge storage in B-X jct.
258 sens_dc Out real DC sensitivity
253 sens_real Out real Real part of AC sensitivity
254 sens_imag Out real DC sens. & imag part of AC sens.
255 sens_mag Out real Sensitivity of AC magnitude
256 sens_ph Out real Sensitivity of AC phase
257 sens_cplx Out complex AC sensitivity

31.5.3.2 VBIC model parameters

# Name Direction Type Description
305 type Out string NPN or PNP
101 npn InOut flag NPN type device
102 pnp InOut flag PNP type device
103 tnom InOut real Parameter measurement temperature
104 rcx InOut real Extrinsic coll resistance
105 rci InOut real Intrinsic coll resistance
106 vo InOut real Epi drift saturation voltage
107 gamm InOut real Epi doping parameter
108 hrcf InOut real High current RC factor
109 rbx InOut real Extrinsic base resistance
110 rbi InOut real Intrinsic base resistance
111 re InOut real Intrinsic emitter resistance
112 rs InOut real Intrinsic substrate resistance
113 rbp InOut real Parasitic base resistance
114 is InOut real Transport saturation current
115 nf InOut real Forward emission coefficient
116 nr InOut real Reverse emission coefficient
117 fc InOut real Fwd bias depletion capacitance limit
118 cbeo InOut real Extrinsic B-E overlap capacitance
119 cje InOut real Zero bias B-E depletion capacitance
120 pe InOut real B-E built in potential
121 me InOut real B-E junction grading coefficient
122 aje InOut real B-E capacitance smoothing factor
123 cbco InOut real Extrinsic B-C overlap capacitance
124 cjc InOut real Zero bias B-C depletion capacitance
125 qco InOut real Epi charge parameter
126 cjep InOut real B-C extrinsic zero bias capacitance
127 pc InOut real B-C built in potential
128 mc InOut real B-C junction grading coefficient
129 ajc InOut real B-C capacitance smoothing factor
130 cjcp InOut real Zero bias S-C capacitance
131 ps InOut real S-C junction built in potential
132 ms InOut real S-C junction grading coefficient
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133 ajs InOut real S-C capacitance smoothing factor
134 ibei InOut real Ideal B-E saturation current
135 wbe InOut real Portion of IBEI from Vbei, 1-WBE from Vbex
136 nei InOut real Ideal B-E emission coefficient
137 iben InOut real Non-ideal B-E saturation current
138 nen InOut real Non-ideal B-E emission coefficient
139 ibci InOut real Ideal B-C saturation current
140 nci InOut real Ideal B-C emission coefficient
141 ibcn InOut real Non-ideal B-C saturation current
142 ncn InOut real Non-ideal B-C emission coefficient
143 avc1 InOut real B-C weak avalanche parameter 1
144 avc2 InOut real B-C weak avalanche parameter 2
145 isp InOut real Parasitic transport saturation current
146 wsp InOut real Portion of ICCP
147 nfp InOut real Parasitic fwd emission coefficient
148 ibeip InOut real Ideal parasitic B-E saturation current
149 ibenp InOut real Non-ideal parasitic B-E saturation current
150 ibcip InOut real Ideal parasitic B-C saturation current
151 ncip InOut real Ideal parasitic B-C emission coefficient
152 ibcnp InOut real Nonideal parasitic B-C saturation current
153 ncnp InOut real Nonideal parasitic B-C emission coefficient
154 vef InOut real Forward Early voltage
155 ver InOut real Reverse Early voltage
156 ikf InOut real Forward knee current
157 ikr InOut real Reverse knee current
158 ikp InOut real Parasitic knee current
159 tf InOut real Ideal forward transit time
160 qtf InOut real Variation of TF with base-width modulation
161 xtf InOut real Coefficient for bias dependence of TF
162 vtf InOut real Voltage giving VBC dependence of TF
163 itf InOut real High current dependence of TF
164 tr InOut real Ideal reverse transit time
165 td InOut real Forward excess-phase delay time
166 kfn InOut real B-E Flicker Noise Coefficient
167 afn InOut real B-E Flicker Noise Exponent
168 bfn InOut real B-E Flicker Noise 1/f dependence
169 xre InOut real Temperature exponent of RE
170 xrb InOut real Temperature exponent of RB
171 xrbi InOut real Temperature exponent of RBI
172 xrc InOut real Temperature exponent of RC
173 xrci InOut real Temperature exponent of RCI
174 xrs InOut real Temperature exponent of RS
175 xvo InOut real Temperature exponent of VO
176 ea InOut real Activation energy for IS
177 eaie InOut real Activation energy for IBEI
179 eaic InOut real Activation energy for IBCI/IBEIP
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179 eais InOut real Activation energy for IBCIP
180 eane InOut real Activation energy for IBEN
181 eanc InOut real Activation energy for IBCN/IBENP
182 eans InOut real Activation energy for IBCNP
183 xis InOut real Temperature exponent of IS
184 xii InOut real Temperature exponent of IBEI,IBCI,IBEIP,IBCIP
185 xin InOut real Temperature exponent of IBEN,IBCN,IBENP,IBCNP
186 tnf InOut real Temperature exponent of NF
187 tavc InOut real Temperature exponent of AVC2
188 rth InOut real Thermal resistance
189 cth InOut real Thermal capacitance
190 vrt InOut real Punch-through voltage of internal B-C junction
191 art InOut real Smoothing parameter for reach-through
192 ccso InOut real Fixed C-S capacitance
193 qbm InOut real Select SGP qb formulation
194 nkf InOut real High current beta rolloff
195 xikf InOut real Temperature exponent of IKF
196 xrcx InOut real Temperature exponent of RCX
197 xrbx InOut real Temperature exponent of RBX
198 xrbp InOut real Temperature exponent of RBP
199 isrr InOut real Separate IS for fwd and rev
200 xisr InOut real Temperature exponent of ISR
201 dear InOut real Delta activation energy for ISRR
202 eap InOut real Exitivation energy for ISP
203 vbbe InOut real B-E breakdown voltage
204 nbbe InOut real B-E breakdown emission coefficient
205 ibbe InOut real B-E breakdown current
206 tvbbe1 InOut real Linear temperature coefficient of VBBE
207 tvbbe2 InOut real Quadratic temperature coefficient of VBBE
208 tnbbe InOut real Temperature coefficient of NBBE
209 ebbe InOut real exp(-VBBE/(NBBE*Vtv))
210 dtemp InOut real Locale Temperature difference
211 vers InOut real Revision Version
212 vref InOut real Reference Version
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31.6 MOSFETs

31.6.1 MOS1 - Level 1 MOSFET model with Meyer capacitance model

31.6.1.1 MOS1 instance parameters

# Name Direction Type Description
21 m InOut real Multiplier
2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter
8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
20 temp InOut real Instance temperature
22 dtemp InOut real Instance temperature difference
10 ic In real vector Vector of D-S, G-S, B-S voltages
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width

215 id Out real Drain current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current

217 ibd Out real B-D junction current
216 ibs Out real B-S junction current
231 vgs Out real Gate-Source voltage
232 vds Out real Drain-Source voltage
230 vbs Out real Bulk-Source voltage
229 vbd Out real Bulk-Drain voltage
203 dnode Out integer Number of the drain node
204 gnode Out integer Number of the gate node
205 snode Out integer Number of the source node
206 bnode Out integer Number of the node
207 dnodeprime Out integer Number of int. drain node
208 snodeprime Out integer Number of int. source node
211 von Out real
212 vdsat Out real Saturation drain voltage
213 sourcevcrit Out real Critical source voltage
214 drainvcrit Out real Critical drain voltage

# Name Direction Type Description
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# Name Direction Type Description
258 rs Out real Source resistance
209 sourceconductance Out real Conductance of source
259 rd Out real Drain conductance
210 drainconductance Out real Conductance of drain
219 gm Out real Transconductance
220 gds Out real Drain-Source conductance
218 gmb Out real Bulk-Source transconductance
218 gmbs Out real
221 gbd Out real Bulk-Drain conductance
222 gbs Out real Bulk-Source conductance
223 cbd Out real Bulk-Drain capacitance
224 cbs Out real Bulk-Source capacitance
233 cgs Out real Gate-Source capacitance
236 cgd Out real Gate-Drain capacitance
239 cgb Out real Gate-Bulk capacitance
235 cqgs Out real Capacitance due to gate-source charge storage
238 cqgd Out real Capacitance due to gate-drain charge storage
241 cqgb Out real Capacitance due to gate-bulk charge storage
243 cqbd Out real Capacitance due to bulk-drain charge storage
245 cqbs Out real Capacitance due to bulk-source charge storage
225 cbd0 Out real Zero-Bias B-D junction capacitance
226 cbdsw0 Out real
227 cbs0 Out real Zero-Bias B-S junction capacitance
228 cbssw0 Out real
234 qgs Out real Gate-Source charge storage
237 qgd Out real Gate-Drain charge storage
240 qgb Out real Gate-Bulk charge storage
242 qbd Out real Bulk-Drain charge storage
244 qbs Out real Bulk-Source charge storage

19 p Out real Instaneous power
256 sens_l_dc Out real dc sensitivity wrt length
246 sens_l_real Out real real part of ac sensitivity wrt length
247 sens_l_imag Out real imag part of ac sensitivity wrt length
248 sens_l_mag Out real sensitivity wrt l of ac magnitude
249 sens_l_ph Out real sensitivity wrt l of ac phase
250 sens_l_cplx Out complex ac sensitivity wrt length
257 sens_w_dc Out real dc sensitivity wrt width
251 sens_w_real Out real real part of ac sensitivity wrt width
252 sens_w_imag Out real imag part of ac sensitivity wrt width
253 sens_w_mag Out real sensitivity wrt w of ac magnitude
254 sens_w_ph Out real sensitivity wrt w of ac phase
255 sens_w_cplx Out complex ac sensitivity wrt width

# Name Direction Type Description

31.6.1.2 MOS1 model parameters
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# Name Direction Type Description
133 type Out string N-channel or P-channel MOS
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 lambda InOut real Channel length modulation
106 rd InOut real Drain ohmic resistance
107 rs InOut real Source ohmic resistance
108 cbd InOut real B-D junction capacitance
109 cbs InOut real B-S junction capacitance
110 is InOut real Bulk junction sat. current
111 pb InOut real Bulk junction potential
112 cgso InOut real Gate-source overlap cap.
113 cgdo InOut real Gate-drain overlap cap.
114 cgbo InOut real Gate-bulk overlap cap.
122 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
123 u0 InOut real Surface mobility
123 uo InOut real
124 fc InOut real Forward bias jct. fit parm.
128 nmos In flag N type MOSfet model
129 pmos In flag P type MOSfet model
125 nsub InOut real Substrate doping
126 tpg InOut integer Gate type
127 nss InOut real Surface state density
130 tnom InOut real Parameter measurement temperature
131 kf InOut real Flicker noise coefficient
132 af InOut real Flicker noise exponent
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31.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model

31.6.2.1 MOS 2 instance parameters

# Name Direction Type Description
80 m InOut real Multiplier
2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

34 id Out real Drain current
34 cd Out real
36 ibd Out real B-D junction current
35 ibs Out real B-S junction current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current
50 vgs Out real Gate-Source voltage
51 vds Out real Drain-Source voltage
49 vbs Out real Bulk-Source voltage
48 vbd Out real Bulk-Drain voltage
8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
77 temp InOut real Instance operating temperature
81 dtemp InOut real Instance temperature difference
10 ic In real vector Vector of D-S, G-S, B-S voltages
15 sens_l In flag flag to request sensitivity WRT

length
14 sens_w In flag flag to request sensitivity WRT

width
22 dnode Out integer Number of drain node
23 gnode Out integer Number of gate node
24 snode Out integer Number of source node
25 bnode Out integer Number of bulk node
26 dnodeprime Out integer Number of internal drain node
27 snodeprime Out integer Number of internal source node
30 von Out real
31 vdsat Out real Saturation drain voltage
32 sourcevcrit Out real Critical source voltage
33 drainvcrit Out real Critical drain voltage
78 rs Out real Source resistance
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28 sourceconductance Out real Source conductance
79 rd Out real Drain resistance
29 drainconductance Out real Drain conductance
38 gm Out real Transconductance
39 gds Out real Drain-Source conductance
37 gmb Out real Bulk-Source transconductance
37 gmbs Out real
40 gbd Out real Bulk-Drain conductance
41 gbs Out real Bulk-Source conductance
42 cbd Out real Bulk-Drain capacitance
43 cbs Out real Bulk-Source capacitance
52 cgs Out real Gate-Source capacitance
55 cgd Out real Gate-Drain capacitance
58 cgb Out real Gate-Bulk capacitance
44 cbd0 Out real Zero-Bias B-D junction

capacitance
45 cbdsw0 Out real
46 cbs0 Out real Zero-Bias B-S junction capacitance
47 cbssw0 Out real
54 cqgs Out real Capacitance due to gate-source

charge storage
57 cqgd Out real Capacitance due to gate-drain

charge storage
60 cqgb Out real Capacitance due to gate-bulk

charge storage
62 cqbd Out real Capacitance due to bulk-drain

charge storage
64 cqbs Out real Capacitance due to bulk-source

charge storage
53 qgs Out real Gate-Source charge storage
56 qgd Out real Gate-Drain charge storage
59 qgb Out real Gate-Bulk charge storage
61 qbd Out real Bulk-Drain charge storage
63 qbs Out real Bulk-Source charge storage
19 p Out real Instantaneous power
75 sens_l_dc Out real dc sensitivity wrt length
70 sens_l_real Out real real part of ac sensitivity wrt length
71 sens_l_imag Out real imag part of ac sensitivity wrt

length
74 sens_l_cplx Out complex ac sensitivity wrt length
72 sens_l_mag Out real sensitivity wrt l of ac magnitude
73 sens_l_ph Out real sensitivity wrt l of ac phase
76 sens_w_dc Out real dc sensitivity wrt width
65 sens_w_real Out real dc sensitivity and real part of ac

sensitivity wrt width
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66 sens_w_imag Out real imag part of ac sensitivity wrt
width

67 sens_w_mag Out real sensitivity wrt w of ac magnitude
68 sens_w_ph Out real sensitivity wrt w of ac phase
69 sens_w_cplx Out complex ac sensitivity wrt width

31.6.2.2 MOS2 model parameters

# Name Direction Type Description
141 type Out string N-channel or P-channel MOS
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 lambda InOut real Channel length modulation
106 rd InOut real Drain ohmic resistance
107 rs InOut real Source ohmic resistance
108 cbd InOut real B-D junction capacitance
109 cbs InOut real B-S junction capacitance
110 is InOut real Bulk junction sat. current
111 pb InOut real Bulk junction potential
112 cgso InOut real Gate-source overlap cap.
113 cgdo InOut real Gate-drain overlap cap.
114 cgbo InOut real Gate-bulk overlap cap.
122 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
123 u0 InOut real Surface mobility
123 uo InOut real
124 fc InOut real Forward bias jct. fit parm.
135 nmos In flag N type MOSfet model
136 pmos In flag P type MOSfet model
125 nsub InOut real Substrate doping
126 tpg InOut integer Gate type
127 nss InOut real Surface state density
129 delta InOut real Width effect on threshold
130 uexp InOut real Crit. field exp for mob. deg.
134 ucrit InOut real Crit. field for mob. degradation
131 vmax InOut real Maximum carrier drift velocity
132 xj InOut real Junction depth
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133 neff InOut real Total channel charge coeff.
128 nfs InOut real Fast surface state density
137 tnom InOut real Parameter measurement temperature
139 kf InOut real Flicker noise coefficient
140 af InOut real Flicker noise exponent
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31.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model

31.6.3.1 MOS3 instance parameters

# Name Direction Type Description
80 m InOut real Multiplier

2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

34 id Out real Drain current
34 cd Out real Drain current
36 ibd Out real B-D junction current
35 ibs Out real B-S junction current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current
50 vgs Out real Gate-Source voltage
51 vds Out real Drain-Source voltage
49 vbs Out real Bulk-Source voltage
48 vbd Out real Bulk-Drain voltage

8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
10 ic InOut real vector Vector of D-S, G-S, B-S voltages
77 temp InOut real Instance operating temperature
81 dtemp InOut real Instance temperature difference
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width
22 dnode Out integer Number of drain node
23 gnode Out integer Number of gate node
24 snode Out integer Number of source node
25 bnode Out integer Number of bulk node
26 dnodeprime Out integer Number of internal drain node
27 snodeprime Out integer Number of internal source node
30 von Out real Turn-on voltage
31 vdsat Out real Saturation drain voltage
32 sourcevcrit Out real Critical source voltage
33 drainvcrit Out real Critical drain voltage
78 rs Out real Source resistance
28 sourceconductance Out real Source conductance
79 rd Out real Drain resistance
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29 drainconductance Out real Drain conductance
38 gm Out real Transconductance
39 gds Out real Drain-Source conductance
37 gmb Out real Bulk-Source transconductance
37 gmbs Out real Bulk-Source transconductance
40 gbd Out real Bulk-Drain conductance
41 gbs Out real Bulk-Source conductance
42 cbd Out real Bulk-Drain capacitance
43 cbs Out real Bulk-Source capacitance
52 cgs Out real Gate-Source capacitance
55 cgd Out real Gate-Drain capacitance
58 cgb Out real Gate-Bulk capacitance
54 cqgs Out real Capacitance due to gate-source charge storage
57 cqgd Out real Capacitance due to gate-drain charge storage
60 cqgb Out real Capacitance due to gate-bulk charge storage
62 cqbd Out real Capacitance due to bulk-drain charge storage
64 cqbs Out real Capacitance due to bulk-source charge storage
44 cbd0 Out real Zero-Bias B-D junction capacitance
45 cbdsw0 Out real Zero-Bias B-D sidewall capacitance
46 cbs0 Out real Zero-Bias B-S junction capacitance
47 cbssw0 Out real Zero-Bias B-S sidewall capacitance
63 qbs Out real Bulk-Source charge storage
53 qgs Out real Gate-Source charge storage
56 qgd Out real Gate-Drain charge storage
59 qgb Out real Gate-Bulk charge storage
61 qbd Out real Bulk-Drain charge storage
19 p Out real Instantaneous power
76 sens_l_dc Out real dc sensitivity wrt length
70 sens_l_real Out real real part of ac sensitivity wrt length
71 sens_l_imag Out real imag part of ac sensitivity wrt length
74 sens_l_cplx Out complex ac sensitivity wrt length
72 sens_l_mag Out real sensitivity wrt l of ac magnitude
73 sens_l_ph Out real sensitivity wrt l of ac phase
75 sens_w_dc Out real dc sensitivity wrt width
65 sens_w_real Out real real part of ac sensitivity wrt width
66 sens_w_imag Out real imag part of ac sensitivity wrt width
67 sens_w_mag Out real sensitivity wrt w of ac magnitude
68 sens_w_ph Out real sensitivity wrt w of ac phase
69 sens_w_cplx Out complex ac sensitivity wrt width
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31.6.3.2 MOS3 model parameters

# Name Direction Type Description
144 type Out string N-channel or P-channel MOS
133 nmos In flag N type MOSfet model
134 pmos In flag P type MOSfet model
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 rd InOut real Drain ohmic resistance
106 rs InOut real Source ohmic resistance
107 cbd InOut real B-D junction capacitance
108 cbs InOut real B-S junction capacitance
109 is InOut real Bulk junction sat. current
110 pb InOut real Bulk junction potential
111 cgso InOut real Gate-source overlap cap.
112 cgdo InOut real Gate-drain overlap cap.
113 cgbo InOut real Gate-bulk overlap cap.
114 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
145 xl InOut real Length mask adjustment
146 wd InOut real Width Narrowing (Diffusion)
147 xw InOut real Width mask adjustment
148 delvto InOut real Threshold voltage Adjust
148 delvt0 InOut real
122 u0 InOut real Surface mobility
122 uo InOut real
123 fc InOut real Forward bias jct. fit parm.
124 nsub InOut real Substrate doping
125 tpg InOut integer Gate type
126 nss InOut real Surface state density
131 vmax InOut real Maximum carrier drift velocity
135 xj InOut real Junction depth
129 nfs InOut real Fast surface state density
138 xd InOut real Depletion layer width
139 alpha InOut real Alpha
127 eta InOut real Vds dependence of threshold voltage
128 delta InOut real Width effect on threshold
140 input_delta InOut real
130 theta InOut real Vgs dependence on mobility
132 kappa InOut real Kappa
141 tnom InOut real Parameter measurement temperature
142 kf InOut real Flicker noise coefficient
143 af InOut real Flicker noise exponent
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31.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model

31.6.4.1 MOS6 instance parameters

# Name Direction Type Description
2 l InOut real Length
1 w InOut real Width

22 m InOut real Parallel Multiplier
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

215 id Out real Drain current
215 cd Out real Drain current

18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current

216 ibs Out real B-S junction capacitance
217 ibd Out real B-D junction capacitance
231 vgs Out real Gate-Source voltage
232 vds Out real Drain-Source voltage
230 vbs Out real Bulk-Source voltage
229 vbd Out real Bulk-Drain voltage

8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
20 temp InOut real Instance temperature
21 dtemp InOut real Instance temperature difference
10 ic In real vector Vector of D-S, G-S, B-S voltages
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width

203 dnode Out integer Number of the drain node
204 gnode Out integer Number of the gate node
205 snode Out integer Number of the source node
206 bnode Out integer Number of the node
207 dnodeprime Out integer Number of int. drain node
208 snodeprime Out integer Number of int. source node
258 rs Out real Source resistance
209 sourceconductance Out real Source conductance
259 rd Out real Drain resistance
210 drainconductance Out real Drain conductance
211 von Out real Turn-on voltage
212 vdsat Out real Saturation drain voltage
213 sourcevcrit Out real Critical source voltage
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214 drainvcrit Out real Critical drain voltage
218 gmbs Out real Bulk-Source transconductance
219 gm Out real Transconductance
220 gds Out real Drain-Source conductance
221 gbd Out real Bulk-Drain conductance
222 gbs Out real Bulk-Source conductance
233 cgs Out real Gate-Source capacitance
236 cgd Out real Gate-Drain capacitance
239 cgb Out real Gate-Bulk capacitance
223 cbd Out real Bulk-Drain capacitance
224 cbs Out real Bulk-Source capacitance
225 cbd0 Out real Zero-Bias B-D junction capacitance
226 cbdsw0 Out real
227 cbs0 Out real Zero-Bias B-S junction capacitance
228 cbssw0 Out real
235 cqgs Out real Capacitance due to gate-source charge storage
238 cqgd Out real Capacitance due to gate-drain charge storage
241 cqgb Out real Capacitance due to gate-bulk charge storage
243 cqbd Out real Capacitance due to bulk-drain charge storage
245 cqbs Out real Capacitance due to bulk-source charge storage
234 qgs Out real Gate-Source charge storage
237 qgd Out real Gate-Drain charge storage
240 qgb Out real Gate-Bulk charge storage
242 qbd Out real Bulk-Drain charge storage
244 qbs Out real Bulk-Source charge storage

19 p Out real Instaneous power
256 sens_l_dc Out real dc sensitivity wrt length
246 sens_l_real Out real real part of ac sensitivity wrt length
247 sens_l_imag Out real imag part of ac sensitivity wrt length
248 sens_l_mag Out real sensitivity wrt l of ac magnitude
249 sens_l_ph Out real sensitivity wrt l of ac phase
250 sens_l_cplx Out complex ac sensitivity wrt length
257 sens_w_dc Out real dc sensitivity wrt width
251 sens_w_real Out real real part of ac sensitivity wrt width
252 sens_w_imag Out real imag part of ac sensitivity wrt width
253 sens_w_mag Out real sensitivity wrt w of ac magnitude
254 sens_w_ph Out real sensitivity wrt w of ac phase
255 sens_w_cplx Out complex ac sensitivity wrt width
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31.6.4.2 MOS6 model parameters

# Name Direction Type Description
140 type Out string N-channel or P-channel MOS
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kv InOut real Saturation voltage factor
103 nv InOut real Saturation voltage coeff.
104 kc InOut real Saturation current factor
105 nc InOut real Saturation current coeff.
106 nvth InOut real Threshold voltage coeff.
107 ps InOut real Sat. current modification par.
108 gamma InOut real Bulk threshold parameter
109 gamma1 InOut real Bulk threshold parameter 1
110 sigma InOut real Static feedback effect par.
111 phi InOut real Surface potential
112 lambda InOut real Channel length modulation param.
113 lambda0 InOut real Channel length modulation param. 0
114 lambda1 InOut real Channel length modulation param. 1
115 rd InOut real Drain ohmic resistance
116 rs InOut real Source ohmic resistance
117 cbd InOut real B-D junction capacitance
118 cbs InOut real B-S junction capacitance
119 is InOut real Bulk junction sat. current
120 pb InOut real Bulk junction potential
121 cgso InOut real Gate-source overlap cap.
122 cgdo InOut real Gate-drain overlap cap.
123 cgbo InOut real Gate-bulk overlap cap.
131 rsh InOut real Sheet resistance
124 cj InOut real Bottom junction cap per area
125 mj InOut real Bottom grading coefficient
126 cjsw InOut real Side junction cap per area
127 mjsw InOut real Side grading coefficient
128 js InOut real Bulk jct. sat. current density
130 ld InOut real Lateral diffusion
129 tox InOut real Oxide thickness
132 u0 InOut real Surface mobility
132 uo InOut real
133 fc InOut real Forward bias jct. fit parm.
137 nmos In flag N type MOSfet model
138 pmos In flag P type MOSfet model
135 tpg InOut integer Gate type
134 nsub InOut real Substrate doping
136 nss InOut real Surface state density
139 tnom InOut real Parameter measurement temperature
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31.6.5 MOS9 - Modified Level 3 MOSFET model

31.6.5.1 MOS9 instance parameters

# Name Direction Type Description
80 m InOut real Multiplier

2 l InOut real Length
1 w InOut real Width
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter

34 id Out real Drain current
34 cd Out real Drain current
36 ibd Out real B-D junction current
35 ibs Out real B-S junction current
18 is Out real Source current
17 ig Out real Gate current
16 ib Out real Bulk current
50 vgs Out real Gate-Source voltage
51 vds Out real Drain-Source voltage
49 vbs Out real Bulk-Source voltage
48 vbd Out real Bulk-Drain voltage

8 nrd InOut real Drain squares
7 nrs InOut real Source squares
9 off In flag Device initially off

12 icvds InOut real Initial D-S voltage
13 icvgs InOut real Initial G-S voltage
11 icvbs InOut real Initial B-S voltage
10 ic InOut real vector Vector of D-S, G-S, B-S voltages
77 temp InOut real Instance operating temperature
81 dtemp InOut real Instance operating temperature difference
15 sens_l In flag flag to request sensitivity WRT length
14 sens_w In flag flag to request sensitivity WRT width
22 dnode Out integer Number of drain node
23 gnode Out integer Number of gate node
24 snode Out integer Number of source node
25 bnode Out integer Number of bulk node
26 dnodeprime Out integer Number of internal drain node
27 snodeprime Out integer Number of internal source node
30 von Out real Turn-on voltage
31 vdsat Out real Saturation drain voltage
32 sourcevcrit Out real Critical source voltage
33 drainvcrit Out real Critical drain voltage
78 rs Out real Source resistance
28 sourceconductance Out real Source conductance
79 rd Out real Drain resistance
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29 drainconductance Out real Drain conductance
38 gm Out real Transconductance
39 gds Out real Drain-Source conductance
37 gmb Out real Bulk-Source transconductance
37 gmbs Out real Bulk-Source transconductance
40 gbd Out real Bulk-Drain conductance
41 gbs Out real Bulk-Source conductance
42 cbd Out real Bulk-Drain capacitance
43 cbs Out real Bulk-Source capacitance
52 cgs Out real Gate-Source capacitance
55 cgd Out real Gate-Drain capacitance
58 cgb Out real Gate-Bulk capacitance
54 cqgs Out real Capacitance due to gate-source charge storage
57 cqgd Out real Capacitance due to gate-drain charge storage
60 cqgb Out real Capacitance due to gate-bulk charge storage
62 cqbd Out real Capacitance due to bulk-drain charge storage
64 cqbs Out real Capacitance due to bulk-source charge storage
44 cbd0 Out real Zero-Bias B-D junction capacitance
45 cbdsw0 Out real Zero-Bias B-D sidewall capacitance
46 cbs0 Out real Zero-Bias B-S junction capacitance
47 cbssw0 Out real Zero-Bias B-S sidewall capacitance
63 qbs Out real Bulk-Source charge storage
53 qgs Out real Gate-Source charge storage
56 qgd Out real Gate-Drain charge storage
59 qgb Out real Gate-Bulk charge storage
61 qbd Out real Bulk-Drain charge storage
19 p Out real Instantaneous power
76 sens_l_dc Out real dc sensitivity wrt length
70 sens_l_real Out real real part of ac sensitivity wrt length
71 sens_l_imag Out real imag part of ac sensitivity wrt length
74 sens_l_cplx Out complex ac sensitivity wrt length
72 sens_l_mag Out real sensitivity wrt l of ac magnitude
73 sens_l_ph Out real sensitivity wrt l of ac phase
75 sens_w_dc Out real dc sensitivity wrt width
65 sens_w_real Out real real part of ac sensitivity wrt width
66 sens_w_imag Out real imag part of ac sensitivity wrt width
67 sens_w_mag Out real sensitivity wrt w of ac magnitude
68 sens_w_ph Out real sensitivity wrt w of ac phase
69 sens_w_cplx Out complex ac sensitivity wrt width
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31.6.5.2 MOS9 model parameters

# Name Direction Type Description
144 type Out string N-channel or P-channel MOS
133 nmos In flag N type MOSfet model
134 pmos In flag P type MOSfet model
101 vto InOut real Threshold voltage
101 vt0 InOut real
102 kp InOut real Transconductance parameter
103 gamma InOut real Bulk threshold parameter
104 phi InOut real Surface potential
105 rd InOut real Drain ohmic resistance
106 rs InOut real Source ohmic resistance
107 cbd InOut real B-D junction capacitance
108 cbs InOut real B-S junction capacitance
109 is InOut real Bulk junction sat. current
110 pb InOut real Bulk junction potential
111 cgso InOut real Gate-source overlap cap.
112 cgdo InOut real Gate-drain overlap cap.
113 cgbo InOut real Gate-bulk overlap cap.
114 rsh InOut real Sheet resistance
115 cj InOut real Bottom junction cap per area
116 mj InOut real Bottom grading coefficient
117 cjsw InOut real Side junction cap per area
118 mjsw InOut real Side grading coefficient
119 js InOut real Bulk jct. sat. current density
120 tox InOut real Oxide thickness
121 ld InOut real Lateral diffusion
145 xl InOut real Length mask adjustment
146 wd InOut real Width Narrowing (Diffusion)
147 xw InOut real Width mask adjustment
148 delvto InOut real Threshold voltage Adjust
148 delvt0 InOut real
122 u0 InOut real Surface mobility
122 uo InOut real
123 fc InOut real Forward bias jct. fit parm.
124 nsub InOut real Substrate doping
125 tpg InOut integer Gate type
126 nss InOut real Surface state density
131 vmax InOut real Maximum carrier drift velocity
135 xj InOut real Junction depth
129 nfs InOut real Fast surface state density
138 xd InOut real Depletion layer width
139 alpha InOut real Alpha
127 eta InOut real Vds dependence of threshold voltage
128 delta InOut real Width effect on threshold
140 input_delta InOut real
130 theta InOut real Vgs dependence on mobility
132 kappa InOut real Kappa
141 tnom InOut real Parameter measurement temperature
142 kf InOut real Flicker noise coefficient
143 af InOut real Flicker noise exponent



558 CHAPTER 31. MODEL AND DEVICE PARAMETERS

31.6.6 BSIM1 - Berkeley Short Channel IGFET Model

31.6.6.1 BSIM1 instance parameters

# Name Direction Type Description
2 l InOut real Length
1 w InOut real Width

14 m InOut real Parallel Multiplier
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter
8 nrd InOut real Number of squares in drain
7 nrs InOut real Number of squares in source
9 off InOut flag Device is initially off

11 vds InOut real Initial D-S voltage
12 vgs InOut real Initial G-S voltage
10 vbs InOut real Initial B-S voltage
13 ic In unknown vector Vector of DS,GS,BS initial voltages

31.6.6.2 BSIM1 Model Parameters

# Name Direction Type Description
101 vfb InOut real Flat band voltage
102 lvfb InOut real Length dependence of vfb
103 wvfb InOut real Width dependence of vfb
104 phi InOut real Strong inversion surface potential
105 lphi InOut real Length dependence of phi
106 wphi InOut real Width dependence of phi
107 k1 InOut real Bulk effect coefficient 1
108 lk1 InOut real Length dependence of k1
109 wk1 InOut real Width dependence of k1
110 k2 InOut real Bulk effect coefficient 2
111 lk2 InOut real Length dependence of k2
112 wk2 InOut real Width dependence of k2
113 eta InOut real VDS dependence of threshold voltage
114 leta InOut real Length dependence of eta
115 weta InOut real Width dependence of eta
116 x2e InOut real VBS dependence of eta
117 lx2e InOut real Length dependence of x2e
118 wx2e InOut real Width dependence of x2e
119 x3e InOut real VDS dependence of eta
120 lx3e InOut real Length dependence of x3e
121 wx3e InOut real Width dependence of x3e
122 dl InOut real Channel length reduction in um
123 dw InOut real Channel width reduction in um
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124 muz InOut real Zero field mobility at VDS=0 VGS=VTH
125 x2mz InOut real VBS dependence of muz
126 lx2mz InOut real Length dependence of x2mz
127 wx2mz InOut real Width dependence of x2mz
128 mus InOut real Mobility at VDS=VDD VGS=VTH, channel length modulation
129 lmus InOut real Length dependence of mus
130 wmus InOut real Width dependence of mus
131 x2ms InOut real VBS dependence of mus
132 lx2ms InOut real Length dependence of x2ms
133 wx2ms InOut real Width dependence of x2ms
134 x3ms InOut real VDS dependence of mus
135 lx3ms InOut real Length dependence of x3ms
136 wx3ms InOut real Width dependence of x3ms
137 u0 InOut real VGS dependence of mobility
138 lu0 InOut real Length dependence of u0
139 wu0 InOut real Width dependence of u0
140 x2u0 InOut real VBS dependence of u0
141 lx2u0 InOut real Length dependence of x2u0
142 wx2u0 InOut real Width dependence of x2u0
143 u1 InOut real VDS depence of mobility, velocity saturation
144 lu1 InOut real Length dependence of u1
145 wu1 InOut real Width dependence of u1
146 x2u1 InOut real VBS depence of u1
147 lx2u1 InOut real Length depence of x2u1
148 wx2u1 InOut real Width depence of x2u1
149 x3u1 InOut real VDS depence of u1
150 lx3u1 InOut real Length dependence of x3u1
151 wx3u1 InOut real Width depence of x3u1
152 n0 InOut real Subthreshold slope
153 ln0 InOut real Length dependence of n0
154 wn0 InOut real Width dependence of n0
155 nb InOut real VBS dependence of subthreshold slope
156 lnb InOut real Length dependence of nb
157 wnb InOut real Width dependence of nb
158 nd InOut real VDS dependence of subthreshold slope
159 lnd InOut real Length dependence of nd
160 wnd InOut real Width dependence of nd
161 tox InOut real Gate oxide thickness in um
162 temp InOut real Temperature in degree Celcius
163 vdd InOut real Supply voltage to specify mus
164 cgso InOut real Gate source overlap capacitance per unit channel width(m)
165 cgdo InOut real Gate drain overlap capacitance per unit channel width(m)
166 cgbo InOut real Gate bulk overlap capacitance per unit channel length(m)
167 xpart InOut real Flag for channel charge partitioning
168 rsh InOut real Source drain diffusion sheet resistance in ohm per square
169 js InOut real Source drain junction saturation current per unit area
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170 pb InOut real Source drain junction built in potential
171 mj InOut real Source drain bottom junction capacitance grading coefficient
172 pbsw InOut real Source drain side junction capacitance built in potential
173 mjsw InOut real Source drain side junction capacitance grading coefficient
174 cj InOut real Source drain bottom junction capacitance per unit area
175 cjsw InOut real Source drain side junction capacitance per unit area
176 wdf InOut real Default width of source drain diffusion in um
177 dell InOut real Length reduction of source drain diffusion
180 kf InOut real Flicker noise coefficient
181 af InOut real Flicker noise exponent
178 nmos In flag Flag to indicate NMOS
179 pmos In flag Flag to indicate PMOS
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31.6.7 BSIM2 - Berkeley Short Channel IGFET Model

31.6.7.1 BSIM2 instance parameters

# Name Direction Type Description
2 l InOut real Length
1 w InOut real Width

14 m InOut real Parallel Multiplier
4 ad InOut real Drain area
3 as InOut real Source area
6 pd InOut real Drain perimeter
5 ps InOut real Source perimeter
8 nrd InOut real Number of squares in drain
7 nrs InOut real Number of squares in source
9 off InOut flag Device is initially off

11 vds InOut real Initial D-S voltage
12 vgs InOut real Initial G-S voltage
10 vbs InOut real Initial B-S voltage
13 ic In unknown vector Vector of DS,GS,BS initial voltages

31.6.7.2 BSIM2 model parameters

# Name Direction Type Description
101 vfb InOut real Flat band voltage
102 lvfb InOut real Length dependence of vfb
103 wvfb InOut real Width dependence of vfb
104 phi InOut real Strong inversion surface potential
105 lphi InOut real Length dependence of phi
106 wphi InOut real Width dependence of phi
107 k1 InOut real Bulk effect coefficient 1
108 lk1 InOut real Length dependence of k1
109 wk1 InOut real Width dependence of k1
110 k2 InOut real Bulk effect coefficient 2
111 lk2 InOut real Length dependence of k2
112 wk2 InOut real Width dependence of k2
113 eta0 InOut real VDS dependence of threshold voltage at VDD=0
114 leta0 InOut real Length dependence of eta0
115 weta0 InOut real Width dependence of eta0
116 etab InOut real VBS dependence of eta
117 letab InOut real Length dependence of etab
118 wetab InOut real Width dependence of etab
119 dl InOut real Channel length reduction in um
120 dw InOut real Channel width reduction in um
121 mu0 InOut real Low-field mobility, at VDS=0 VGS=VTH
122 mu0b InOut real VBS dependence of low-field mobility
123 lmu0b InOut real Length dependence of mu0b
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124 wmu0b InOut real Width dependence of mu0b
125 mus0 InOut real Mobility at VDS=VDD VGS=VTH
126 lmus0 InOut real Length dependence of mus0
127 wmus0 InOut real Width dependence of mus
128 musb InOut real VBS dependence of mus
129 lmusb InOut real Length dependence of musb
130 wmusb InOut real Width dependence of musb
131 mu20 InOut real VDS dependence of mu in tanh term
132 lmu20 InOut real Length dependence of mu20
133 wmu20 InOut real Width dependence of mu20
134 mu2b InOut real VBS dependence of mu2
135 lmu2b InOut real Length dependence of mu2b
136 wmu2b InOut real Width dependence of mu2b
137 mu2g InOut real VGS dependence of mu2
138 lmu2g InOut real Length dependence of mu2g
139 wmu2g InOut real Width dependence of mu2g
140 mu30 InOut real VDS dependence of mu in linear term
141 lmu30 InOut real Length dependence of mu30
142 wmu30 InOut real Width dependence of mu30
143 mu3b InOut real VBS dependence of mu3
144 lmu3b InOut real Length dependence of mu3b
145 wmu3b InOut real Width dependence of mu3b
146 mu3g InOut real VGS dependence of mu3
147 lmu3g InOut real Length dependence of mu3g
148 wmu3g InOut real Width dependence of mu3g
149 mu40 InOut real VDS dependence of mu in linear term
150 lmu40 InOut real Length dependence of mu40
151 wmu40 InOut real Width dependence of mu40
152 mu4b InOut real VBS dependence of mu4
153 lmu4b InOut real Length dependence of mu4b
154 wmu4b InOut real Width dependence of mu4b
155 mu4g InOut real VGS dependence of mu4
156 lmu4g InOut real Length dependence of mu4g
157 wmu4g InOut real Width dependence of mu4g
158 ua0 InOut real Linear VGS dependence of mobility
159 lua0 InOut real Length dependence of ua0
160 wua0 InOut real Width dependence of ua0
161 uab InOut real VBS dependence of ua
162 luab InOut real Length dependence of uab
163 wuab InOut real Width dependence of uab
164 ub0 InOut real Quadratic VGS dependence of mobility
165 lub0 InOut real Length dependence of ub0
166 wub0 InOut real Width dependence of ub0
167 ubb InOut real VBS dependence of ub
168 lubb InOut real Length dependence of ubb
169 wubb InOut real Width dependence of ubb
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170 u10 InOut real VDS depence of mobility
171 lu10 InOut real Length dependence of u10
172 wu10 InOut real Width dependence of u10
173 u1b InOut real VBS depence of u1
174 lu1b InOut real Length depence of u1b
175 wu1b InOut real Width depence of u1b
176 u1d InOut real VDS depence of u1
177 lu1d InOut real Length depence of u1d
178 wu1d InOut real Width depence of u1d
179 n0 InOut real Subthreshold slope at VDS=0 VBS=0
180 ln0 InOut real Length dependence of n0
181 wn0 InOut real Width dependence of n0
182 nb InOut real VBS dependence of n
183 lnb InOut real Length dependence of nb
184 wnb InOut real Width dependence of nb
185 nd InOut real VDS dependence of n
186 lnd InOut real Length dependence of nd
187 wnd InOut real Width dependence of nd
188 vof0 InOut real Threshold voltage offset AT VDS=0 VBS=0
189 lvof0 InOut real Length dependence of vof0
190 wvof0 InOut real Width dependence of vof0
191 vofb InOut real VBS dependence of vof
192 lvofb InOut real Length dependence of vofb
193 wvofb InOut real Width dependence of vofb
194 vofd InOut real VDS dependence of vof
195 lvofd InOut real Length dependence of vofd
196 wvofd InOut real Width dependence of vofd
197 ai0 InOut real Pre-factor of hot-electron effect.
198 lai0 InOut real Length dependence of ai0
199 wai0 InOut real Width dependence of ai0
200 aib InOut real VBS dependence of ai
201 laib InOut real Length dependence of aib
202 waib InOut real Width dependence of aib
203 bi0 InOut real Exponential factor of hot-electron effect.
204 lbi0 InOut real Length dependence of bi0
205 wbi0 InOut real Width dependence of bi0
206 bib InOut real VBS dependence of bi
207 lbib InOut real Length dependence of bib
208 wbib InOut real Width dependence of bib
209 vghigh InOut real Upper bound of the cubic spline function.
210 lvghigh InOut real Length dependence of vghigh
211 wvghigh InOut real Width dependence of vghigh
212 vglow InOut real Lower bound of the cubic spline function.
213 lvglow InOut real Length dependence of vglow
214 wvglow InOut real Width dependence of vglow
215 tox InOut real Gate oxide thickness in um
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216 temp InOut real Temperature in degree Celcius
217 vdd InOut real Maximum Vds
218 vgg InOut real Maximum Vgs
219 vbb InOut real Maximum Vbs
220 cgso InOut real Gate source overlap capacitance per unit channel width(m)
221 cgdo InOut real Gate drain overlap capacitance per unit channel width(m)
222 cgbo InOut real Gate bulk overlap capacitance per unit channel length(m)
223 xpart InOut real Flag for channel charge partitioning
224 rsh InOut real Source drain diffusion sheet resistance in ohm per square
225 js InOut real Source drain junction saturation current per unit area
226 pb InOut real Source drain junction built in potential
227 mj InOut real Source drain bottom junction capacitance grading coefficient
228 pbsw InOut real Source drain side junction capacitance built in potential
229 mjsw InOut real Source drain side junction capacitance grading coefficient
230 cj InOut real Source drain bottom junction capacitance per unit area
231 cjsw InOut real Source drain side junction capacitance per unit area
232 wdf InOut real Default width of source drain diffusion in um
233 dell InOut real Length reduction of source drain diffusion
236 kf InOut real Flicker noise coefficient
237 af InOut real Flicker noise exponent
234 nmos In flag Flag to indicate NMOS
235 pmos In flag Flag to indicate PMOS
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31.6.8 BSIM3

The accessible device parameters (see chapt. 31.1 for the syntax) are listed here.

31.6.8.1 BSIM3 accessible instance parameters

# Name Direction Type Description
1 id Out real Drain current
2 vgs Out real Gate-Source voltage
3 vds Out real Drain-Source voltage
4 vbs Out real Bulk-Source voltage
5 gm Out real Transconductance
6 gds Out real Drain-Source conductance
7 gmbs Out real Bulk-Source transconductance
8 vdsat Out real Saturation voltage
9 vth Out real Threshold voltage

10 ibd Out real
11 ibs Out real
12 gbd Out real
13 gbs Out real
14 qb Out real Qbulk
15 cqb Out real
16 qg Out real Qgate
17 cqg Out real
18 qd Out real Qdrain
19 cqd Out real
20 cgg Out real
21 cgd Out real
22 cgs Out real
23 cdg Out real
24 cdd Out real
25 cds Out real
26 cbg Out real
27 cbd Out real
28 cbs Out real
29 capbd Out real Diode capacitance
30 capbs Out real Diode capacitance

The parameters are available in the BSIM3 models (level=8 or level=49) version=3.2.4 and ver-
sion=3.3.0 only. Negative capacitance values may occur, depending on the internal calculation.
Please see the note in chapter 31.6.9.1.

31.6.8.2 BSIM3 manual

Further detailed descriptions will not be given here. Unfortunately the details on these param-
eters are not documented, even not in the otherwise excellent pdf manual (tarred) issued by

http://www-device.eecs.berkeley.edu/bsim/Files/BSIM3/ftpv330/Mod_doc/b3v33manu.tar
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University of California at Berkeley.

31.6.9 BSIM4

The accessible device parameters (see chapt. 31.1 for the syntax) are listed here.

31.6.9.1 BSIM4 accessible instance parameters

# Name Direction Type Description
gmbs Out real Body effect (Back gate) transconductance
gm Out real Transconductance
gds Out real Drain-Source conductance
vdsat Out real Saturation voltage
vth Out real Threshold voltage
id Out real Drain current
ibd Out real Diode current
ibs Out real Diode current
gbd Out real Diode conductance
gbs Out real Diode conductance
isub Out real Substrate current
igidl Out real Gate-Induced Drain Leakage current
igisl Out real Gate-Induced Source Leakage current
igs Out real Gate-Source current
igd Out real Gate-drain current
igb Out real Gate-Bulk current
igcs Out real
vbs Out real Bulk-Source voltage
vgs Out real Gate-Source voltage
vds Out real Drain-Source voltage
cgg Out real
cgs Out real
cgd Out real
cbg Out real
cbd Out real
cbs Out real
cdg Out real
cdd Out real
cds Out real
csg Out real
csd Out real
css Out real
cgb Out real
cdb Out real
csb Out real
cbb Out real
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capbd Out real Diode capacitance
capbs Out real Diode capacitance
qg Out real Gate charge
qb Out real Bulk charge
qd Out real Drain charge
qs Out real
qinv Out real
qdef Out real
gcrg Out real
gtau Out real

The parameters are available in all BSIM4 models (level=14 or level=54) version=4.2.1 to ver-
sion=4.7.

Negative capacitance values may occur, depending on the internal calculation. To comparing
with measured data, please just use the absolute values of the capacitance data. For an expla-
nation of negative values and the basics on how capacitance values are evaluated in a BSIM
model, please refer to the book BSIM4 and MOSFET modeling by Liu and Hu, chapter 5.2.

31.6.9.2 BSIM4 manual

Detailed descriptions will not be given here. Unfortunately the details on these parameters
are not documented, even not in the otherwise excellent pdf manual issued by University of
California at Berkeley.

http://ngspice.sourceforge.net/books.html
http://www-device.eecs.berkeley.edu/bsim/Files/BSIM4/BSIM470/BSIM470_Manual.pdf
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Chapter 32

Compilation notes

This file describes the procedures to install ngspice from sources.

32.1 Ngspice Installation under LINUX (and other ’UNIXes’)

32.1.1 Prerequisites

Ngspice is written in C and thus a complete C compilation environment is needed. Almost
any UNIX comes with a complete C development environment. Ngspice is developed on
GNU/Linux with gcc and GNU make.

The following software must be installed in your system to compile ngspice: bison, flex, and
X11 headers and libs.

The X11 headers and libraries are typically available in an X11 development package from your
LINUX distribution.

If you want to compile the Git source you need additional software: autoconf, automake,
libtool, texinfo.

The following software may be needed when enabling additional features: readline, editline,
tcl/tk, blt.

If you want have high performance and accurate FFT’s you should install: fftw-3. Ngspice
configure script will find the library and will induce the build process to link against it.

32.1.2 Install from Git

This section describes how to install from source code taken direct from Git. This will give
you access to the most recent enhancements and corrections. However be careful as the code
in Git may be under development and thus still unstable. For user install instructions using
source from released distributions, please see the sections titled ’Install from tarball’ (32.1.3)
and ’Advanced Install’ (32.1.5).

Download source from Git as described on the sourceforge ngspice Git page. Define and enter
a directory of your choice, e.g. /home/myname/software/. Download the complete ngspice
repository from Git, for example by anonymous access issuing the command

569
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git clone git://git.code.sf.net/p/ngspice/ngspice

or via http protocol

git clone http://git.code.sf.net/p/ngspice/ngspice

You will find the sources in directory /home/myname/software/ngspice. Now enter the
ngspice top level directory ngspice (where the installation instruction file INSTALL can be
found).

The project uses the GNU build process. You should be able to do the following:

$ ./autogen.sh

$ ./configure --enable-xspice --enable-cider
--disable-debug --with-readline=yes

$ make

$ sudo make install

See the section titled ’Advanced Install’ (32.1.5) for instructions about arguments that can be
passed to ./configure to customize the build and installation. The following arguments are
already used here and may be called sort of “standard”:

--enable-xspice Include the XSPICE extensions (see chapters 12 and 28)

--enable-cider Include CIDER numerical device simulator (see chapter 30)

--disable-debug No debugging information included (optimized and compact code)

--with-readline=yes Include an editor for the input command line (command history, backspace,
insert etc.). If readline is not available, editline may be used.

--enable-openmp Compile ngspice for multi-core processors. Paralleling is done by OpenMP
(see chapt. 16.10), and is enabled for certain MOS models.

If a problem is found with the build process, please submit a report to the Ngspice development
team. Please provide information about your system and any ./configure arguments you
are using, together with any error messages. Ideally you would have tried to fix the problem
yourself first. If you have fixed the problem then the development team will love to hear from
you.

If you need updating your local source code tree from Git, just enter ngspice directory and
issue the command

git pull

git pull will deny to overwrite modified files in your working directory. To drop your local
changes first, you can run

git reset --hard

To learn more about Git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation which has pointers to docu-
mentation and tutorials.

http://git-scm.com/
http://git-scm.com/documentation
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32.1.3 Install from a tarball, e.g. ngspice-rework-25.tgz

This covers installation from a tarball (for example ngspice-rework-25.tgz, to be found at
http://sourceforge.net/projects/ngspice/files/). After downloading the tar ball to a local direc-
tory unpack it using:

$ tar -zxvf ngspice-rework-25.tgz

Now change directories in to the top-level source directory (where this text from the INSTALL
file can be found).

You should be able to do:

$ ./configure --enable-xspice --disable-debug --with-readline=yes

$ make

$ sudo make install

The default install dir is /usr/local/bin

See the section titled ’Advanced Install’ (32.1.5) for instructions about arguments that can be
passed to ./configure to customize the build and installation.

32.1.4 Compilation using an user defined directory tree for object files

The procedures described above will store the *.o files (output of the compilation step) into the
directories where the sources (*.c) are located. This may not be the best option if you want for
example to maintain a debug version and in parallel a release version of ngspice (./configure
--disable-debug). So if you intend to create a separate object file tree like ngspice/ngbuild/re-
lease, you may do the following, starting from the default directory ngspice:

mkdir -p release

cd release

../configure --enable-xspice --disable-debug --with-readline=yes <more options>

make install

This will create an object file directory tree, similar to the source file directory tree, the object
files are now separated from the source files. For the debug version, you may do the same
as described above, replacing ’release’ by ’debug’, and obtain another separated object file
directory tree. If you already have run ./configure in ngspice, you have to do a maintainer-
clean, before the above procedure will work.

32.1.5 Advanced Install

Some extra options can be provided to ’./configure’. To get all available options do:

$ ./configure --help

Some of these options are generic to the GNU build process that is used by Ngspice, other are
specific to Ngspice.

The following sections provide some guidance and descriptions for many, but not all, of these
options.
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32.1.5.1 Options Specific to Using Ngspice

--enable-openmp Compile ngspice for multi-core processors. Paralleling is done by OpenMP
(see chapt. 16.10).

--enable-xspice Enable XSPICE enhancements, yielding a mixed signal simulator inte-
grated into ngspice with codemodel dynamic loading support. See chapter 12 and section II
for details.

--with-readline=yes Enable GNU readline support for the command line interface.

--enable-cider Cider is a mixed-level simulator that couples Spice3 and DSIM to simulate
devices from their technological parameters. This part of the simulator is not compiled by
default.

--enable-adms ADMS is an experimental model compiler that translates Verilog-A compact
models into C code that can be compiled into ngspice. This is still experimental, but working
with some limitations to the models (e.g. no noise models). If you want to use it, please refer
to the ADMS section on ngspice web site .

--with-editline=yes Enables the use of the BSD editline library (libedit).
See http://www.thrysoee.dk/editline/.

--without-x Disable the X-Windows graphical system. Compile without needing X headers
and X libraries. The plot command (17.5.43) is now disabled. You may use gnuplot (17.5.26)
instead.

--with-tcl=tcldir When configured with this option the tcl module "tclspice" is compiled
and installed instead of plain ngspice.

--with-ngshared This option will create a shared library (*.so in LINUX) or dynamic link
library (*.dll) instead of plain ngspice.

The following options are seldom used today, not tested, some may even no longer be imple-
mented.

--enable-capbypass Bypass calculation of cbd/cbs in the mosfets if the vbs/vbd voltages are
unchanged.

--enable-capzerobypass Bypass all the cbd/cbs calculations if Czero is zero. This is en-
abled by default since rework-18.

--enable-cluster Clustering code for distributed simulation. This is a contribution never
tested. This code comes from TCLspice implementation and is implemented for transient anal-
ysis only.

--enable-expdevices Enable experimental devices. This option is used by developers to
mask devices under development. Almost useless for users.

--enable-experimental This enables some experimental code. Specifically it enables: *
support for altering options in interactive mode by adding the interactive keyword ’options’. *
The ability to save and load snapshots: adds interactive keywords ’savesnap’ and ’loadsnap’.

--enable-help Force building nghelp. This is deprecated.

--enable-newpred Enable the NEWPRED symbol in the code.

--enable-newtrunc Enable the newtrunc option

http://tiswww.case.edu/php/chet/readline/rltop.html
http://ngspice.sourceforge.net/admshowto.html
http://www.thrysoee.dk/editline/
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--enable-ndev Enable NDEV interface, (experimental) A TCP/IP interface to external device
simulator such as GSS. For more information, please visit the homepage of GSS at http://gss-
tcad.sourceforge.net

--enable-nodelimiting Experimental damping scheme

--enable-nobypass Don’t bypass recalculations of slowly changing variables

--enable-nosqrt Use always log/exp for non-linear capacitances –enable-predictor Enable a
predictor method for convergence

--enable-sense2 Use spice2 sensitivity analysis

--enable-xgraph Compile the Xgraph plotting program. Xgraph is a plotting package for
X11 and was once very popular.

32.1.5.2 Options Useful for Debugging Ngspice

--disable-debug This option will remove the ’-g’ option passed to the compiler. This speeds
up execution time, creates a small executable, and is recommended for normal use. If you want
to run ngspice in a debugger (e.g. gdb), you should not select this option.

The following options are seldom used today, not tested, some may even no longer be imple-
mented.

--enable-ansi Configure will try to find an option for your compiler so that it expects ansi-C.

--enable-asdebug Debug sensitivity code *ASDEBUG*.

--enable-blktmsdebug Debug distortion code *BLOCKTIMES*

--enable-checkergcc Option for compilation with checkergcc.

--enable-cpdebug Enable ngspice shell code debug.

--enable-ftedebug Enable ngspice frontend debug.

--enable-gc Enable the Boehm-Weiser Conservative Garbage Collector.

--enable-pzdebug Debug pole/zero code.

--enable-sensdebug Debug sensitivity code *SENSDEBUG*.

--enable-smltmsdebug Debug distortion code *SMALLTIMES*

--enable-smoketest Enable smoketest compile.

--enable-stepdebug Turns on debugging of convergence steps in transient analysis

32.1.6 Compilers and Options

Some systems require unusual options for compilation or linking that the ‘configure’ script
does not know about. You can give ‘configure’ initial values for variables by setting them in the
environment. Using a Bourne-compatible shell, you can do that on the command line like this:

CC=c89

CFLAGS=-O2

LIBS=-lposix

http://gss-tcad.sourceforge.net
http://gss-tcad.sourceforge.net
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./configure

Or on systems that have the ‘env’ program, you can do it like this:

env CPPFLAGS=-I/usr/local/include

LDFLAGS=-s

./configure

32.1.7 Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by placing
the object files for each architecture in their own directory. To do this, you must use a version
of ‘make’ that supports the ‘VPATH’ variable, such as GNU ‘make’. ‘cd’ to the directory
where you want the object files and executables to go and run the ‘configure’ script. ‘configure’
automatically checks for the source code in the directory that ‘configure’ is in and in ‘..’.

If you have to use a ‘make’ that does not supports the ‘VPATH’ variable, you have to compile the
package for one architecture at a time in the source code directory. After you have installed the
package for one architecture, use ‘make distclean’ before reconfiguring for another architecture.

32.1.8 Installation Names

By default, ‘make install’ will install the package’s files in ‘/usr/local/bin’, ‘/usr/local/man’, etc.
You can specify an installation prefix other than ‘/usr/local’ by giving ‘configure’ the option ‘–
prefix=PATH’.

You can specify separate installation prefixes for architecture-specific files and architecture-
independent files. If you give ‘configure’ the option ‘–exec-prefix=PATH’, the package will use
PATH as the prefix for installing programs and libraries. Documentation and other data files
will still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like ‘–bindir=PATH’
to specify different values for particular kinds of files. Run ‘configure –help’ for a list of the
directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix or suf-
fix on their names by giving ‘configure’ the option ‘–program-prefix=PREFIX’ or ‘–program-
suffix=SUFFIX’.

When installed on MinGW with MSYS alternative paths are not fully supported. See ’How to
make ngspice with MINGW and MSYS’ below for details.

32.1.9 Optional Features

Some packages pay attention to ‘–enable-FEATURE’ options to ‘configure’, where FEATURE
indicates an optional part of the package. They may also pay attention to ‘–with-PACKAGE’
options, where PACKAGE is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’ should mention any ‘–enable-’ and ‘–with-’ options that the package recognizes.

For packages that use the X Window System, ‘configure’ can usually find the X include and li-
brary files automatically, but if it doesn’t, you can use the ‘configure’ options ‘–x-includes=DIR’
and ‘–x-libraries=DIR’ to specify their locations.
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32.1.10 Specifying the System Type

There may be some features ‘configure’ can not figure out automatically, but needs to determine
by the type of host the package will run on. Usually ‘configure’ can figure that out, but if it prints
a message saying it can not guess the host type, give it the ‘–host=TYPE’ option. TYPE can
either be a short name for the system type, such as ‘sun4’, or a canonical name with three fields:
CPU-COMPANY-SYSTEM

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t included in
this package, then this package doesn’t need to know the host type.

If you are building compiler tools for cross-compiling, you can also use the ‘–target=TYPE’
option to select the type of system they will produce code for and the ‘–build=TYPE’ option to
select the type of system on which you are compiling the package.

32.1.11 Sharing Defaults

If you want to set default values for ‘configure’ scripts to share, you can create a site shell script
called ‘config.site’ that gives default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then ‘PREFIX/etc/config.site’ if it
exists. Or, you can set the ‘CONFIG_SITE’ environment variable to the location of the site
script. A warning: not all ‘configure’ scripts look for a site script.

32.1.12 Operation Controls

‘configure’ recognizes the following options to control how it operates.

‘--cache-file=FILE’ Use and save the results of the tests in FILE instead of ‘./config.cache’.
Set FILE to ‘/dev/null’ to disable caching, for debugging ‘configure’.

‘--help’ Print a summary of the options to ‘configure’, and exit.

‘--quiet’ ‘--silent’ ‘-q’ Do not print messages saying which checks are being made.
To suppress all normal output, redirect it to ‘/dev/null’ (any error messages will still be shown).

‘--srcdir=DIR’ Look for the package’s source code in directory DIR. Usually ‘configure’
can determine that directory automatically.

‘--version’ Print the version of Autoconf used to generate the ‘configure’ script, and exit.

‘configure’ also accepts some other, not widely useful, options.

32.2 Ngspice Compilation under WINDOWS OS

32.2.1 How to make ngspice with MINGW and MSYS

Creating ngspice with MINGW is now a straight forward procedure, if you have MSYS/MINGW
installed properly. Unfortunately the installation is rather tedious because you will need several
enhancements to the standard install, especially if you want to include XSpice. Some links are
given below which describe the procedures. The default installation location of ngspice is the
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Windows path C:\spice. The install path can be altered by passing --prefix=NEWPATH as an
argument to ./configure during the build process.

Put the install path you desire inside "", e.g. "D:/NewSpice". Be careful to use forward slashes
"/", not backward slashes "\" (something still to be fixed). Then add --prefix="D:/NewSpice"
as an argument to ./configure in the normal way.

The procedure of compiling a distribution (for example, a the most recent stable distribution
from the ngspice website, e.g. ngspice-25.tar.gz), is as follows:

$ cd ngspice

$ cd release

$ ../configure --with-wingui ...and other options

$ make

$ make install

The useful options are:

--enable-xspice (this requires FLEX and BISON available in MSYS, see below).

--enable-cider

--disable-debug (-O2 optimization, no debug information)

A complete ngspice (release version, no debug info, optimized executable) may be made avail-
able just by

$ cd ngspice

$ ./compile_min.sh

If you want to compile the Git source you need additional software packages autoconf, au-
tomake, libtool, available from the MSYS distribution and git, available for example here.

Download source from Git as described on the sourceforge ngspice Git page. Define and enter
a directory of your choice, e.g. /d/spice/. Download the complete ngspice repository from Git,
for example by anonymous access issuing the command

git clone git://ngspice.git.sourceforge.net/gitroot/ngspice/ngspice

You will find the sources in directory /d/spice/ngspice/. Now enter the ngspice top level
directory ngspice. This is the procedure for compilation:

$ cd ngspice

$ ./autogen.sh

$ mkdir release

$ cd release

$ ../configure --with-wingui ...and other options

$ make

$ make install

http://msysgit.github.com/
http://sourceforge.net/scm/?type=git&group_id=38962
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The user defined build tree saves the object files, instead of putting them into the source tree, in
a release (and a debug) tree. Please see chapt. 32.1.4 for instructions.

If you need updating your local source code tree from Git, just enter ngspice directory and
issue the command

git pull

git pull will deny to overwrite modified files in your working directory. To drop your local
changes first, you can run

git reset --hard

To learn more about Git, which can be both powerful and difficult to master, please consult
http://git-scm.com/, especially: http://git-scm.com/documentation which has pointers to docu-
mentation and tutorials.

MINGW and MSYS can be downloaded from http://www.mingw.org/. The making of the code
models *.cm for XSpice and one of the ngspice parsers require the installation of BISON and
FLEX to MSYS. A typical installation was tested with: bison-2.0-MSYS.tar.gz flex-2.5.4a-1-
bin.zip libiconv-1.9.2-1-bin.zip libintl-0.14.4-bin.zip

Bison 2.0 is now superseded by newer releases
(Bison 2.3, see http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=67879)

The last three are from http://sourceforge.net/project/showfiles.php?group_id=23617.

You may also look at

http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite

http://www.mingw.org/wiki/MSYS

http://www.mingw.org/wiki/HOWTO_Create_an_MSYS_Build_Environment.

32.2.2 64 Bit executables with MINGW-w64

Procedure:

Install MSYS, plus bison, flex, auto tools, perl, libiconv, libintl

Install MINGW-w64, activate OpenMP support

See either http://mingw-w64.sourceforge.net/ or http://tdm-gcc.tdragon.net/

(allows to generate both 32 or 64 bit executables by setting flag -m32 or -m64)

Set path to compiler in msys/xx/etc/fstab (e.g. c:/MinGW64 /mingw)

Start compiling with

’./compile_min.sh’ or ’./compile_min.sh 64’

Options used in the script:

–adms and –enable-adms ADMS is an experimental model compiler that translates Verilog-A
compact models into C code that can be compiled into ngspice. This is still experimental, but

http://git-scm.com/
http://git-scm.com/documentation
http://www.mingw.org/
http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=67879
 http://sourceforge.net/project/showfiles.php?group_id=23617
http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite
http://www.mingw.org/wiki/MSYS 
http://www.mingw.org/wiki/HOWTO_Create_an_MSYS_Build_Environment.
http://mingw-w64.sourceforge.net/
http://tdm-gcc.tdragon.net/
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working with some limitations to the models (e.g. no noise models). If you want to use it,
please refer to the ADMS section on ngspice web site .

CIDER, XSPICE, and OpenMP may be selected at will.

–disable-debug will give O2 optimization (versus O0 for debug) and removes all debugging
info.

The install script will copy all files to C:\Spice or C:\Spice64, the code models for XSPICE will
be stored in C:\Spice\lib\spice or C:\Spice64\lib\spice respectively.

A word of caution: Be aware that there might be some bugs in your 64 bit code. We still have
some compiler warnings about integer incompatibility (e.g. integer versus size_t etc.)! We will
take care of that for the next release.

32.2.3 make ngspice with MS Visual Studio 2008 or 2010

ngspice may be compiled with MS Visual Studio 2008. Support for MS Visual Studio 2010 is
easily achieved by using the automatic project migration offered by Microsoft.

CIDER and XSPICE are included, but the code models for XSPICE (*.cm) are not (yet) made.
You may however use the code models (which in fact are dlls) created with MINGW, as e.g.
found in the ngspice binary distribution. There is currently no installation procedure provided,
you may however install the executable manually as described in the installation tree below. The
directory (visualc) with its files vngspice.sln (project starter) and vngspice.vcproj (project con-
tents) allows to compile and link ngspice with MS Visual Studio 2008. The project is probably
not compatible with Visual Studio 2005, but may be translated for use with 2010.

/visualc/include contains a dedicated config.h file. It contains the preprocessor definitions re-
quired to properly compile the code. strings.h has been necessary during setting up the project.

Install Microsoft Visual Studio 2008 C++. The MS VS 2008 C++ Express Edition (which is
available at no cost from http://www.microsoft.com/express/product/default.aspx) is adequate,
if you do not wish to have OpenMP or 64 bit support. So the express edition will allow a 32
bit Release and a Debug version of ngspice, using the Win32 flag. In addition you may select
a console version without graphics interface. The professional edition will offer Release and
Debug and Console also for 64 bit (flag x64), as well as an OpenMP variant for 32 or 64 bit.

Procedure:

Goto /ngspice/visualc.

Start MS Visual Studio 2008 by double click onto vngspice.sln. After MS Visual Studio has
opened up, select debug or release version by checking ’Erstellen’ , ’Konfigurations-Manager’
’Debug’ or ’Release’. Start making ngspice (called vngspice.exe) by selecting ’Erstellen’ and
’vngspice neu erstellen’. Object files will be created and stored in visualc/debug or visualc/re-
lease. The executable will be stored to visualc/debug/bin or visualc/release/bin.

An installation tree (as provided with MINGW make install) and also used by vngspice in its
current distribution is shown in the following table (maybe created manually):

If you intend to install vngspice into another directory, e.g. D:\MySpice, you have to edit
/visualc/include/config.h and alter the following entries from:

#define NGSPICEBINDIR "C:/Spice/bin"

http://ngspice.sourceforge.net/admshowto.html
http://www.microsoft.com/express/product/default.aspx
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C:\Spice\
bin\

ngspice.exe
nghelp.exe
ngmakeidx.exe
ngnutmeg.exe
cmpp.exe

lib\
spice\

analog.cm
digital.cm
spice2poly.cm
extradev.cm
extravt.cm

share\
info\

dir
ngspice.info
ngspice.info-1
..
ngspice.info-10

man\
man1\

ngmultidec.1
ngnutmeg.1
ngsconvert.1
ngspice.1

ngspice\
helpdir\

ngspice.idx
ngspice.txt

scripts\
ciderinit
devaxis
devload
setplot
spectrum
spinit

Table 32.1: ngspice standard installation tree under MS Windows
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#define NGSPICEDATADIR "C:/Spice/share/ngspice"

to

#define NGSPICEBINDIR "D:/MySpice/bin"

#define NGSPICEDATADIR "D:/MySpice/share/ngspice"

nghelp.exe is deprecated and no longer offered, but still available in the binary distribution. If
the code model files *.cm are not available, you will get warning messages, but you may use
ngspice in the normal way (of course without XSPICE extensions). To-Do: Some commands
in how-to-ngspice-vstudio.txt and mentioned above have to be translated to English.

To use the FFTW-3 library, download the precompiled MS Windows distribution (either 32
bit or 64 bit) from http://www.fftw.org/install/windows.html. Extract at least the files fftw3.h,
libfftw3-3.def, and libfftw3-3.dll to directory fftw-3.3.3-dll32 (from 32 bit fftw3 for ngspice
32 bit), or to directory fftw-3.3.3-dll64 (from 64 bit fftw3 for ngspice 64 bit). Then select the
MS VC++ project file visualc/vngspice-fftw.vcproj for starting VC++, select the appropriate
configuration and platform, and off you go.

32.2.4 make ngspice with pure CYGWIN

The procedure of compiling is the same as with Linux (see chapt. 32.1). After you have moved
to the ngspice directory, the following command sequence may do the work for you:

$ ./autogen.sh

$ mkdir release-cyg

$ cd release-cyg

$ ../configure --with-x --disable-debug --with-readline=yes --enable-xspice
--enable-pss --enable-cider --enable-openmp

$ make clean 2>&1 | tee make_clean.log

$ make 2>&1 | tee make.log

$ make install 2>&1 | tee make_install.log

The CYGWIN console executable you have been creating is an X11 application. This is a not
a Windows native environment. So you have to add an X11 graphics interface by installing the
XServer from the CYGWIN project. Before starting ngspice, you have to start the XServer by
the following commands within the CYGWIN window:

$ export DISPLAY=:0.0

$ xwin -multiwindow -clipboard &

If you don’t have libdl.a you may need to link libcygwin.a to libdl.a symbolically, for example:

$ cd /lib $ ln -s libcygwin.a libdl.a.

32.2.5 ngspice mingw or cygwin console executable w/o graphics

If you omit the configure flag “–with-wingui” or “–with-x”, you will obtain a console applica-
tion without graphics interface.

http://www.fftw.org/install/windows.html
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./configure --enable-xspice --enable-cider --enable-openmp
--disable-debug CFLAGS=-m32 LDFLAGS=-m32 prefix=C:/Spice

is an example for TDM mingw, 32 Bit ngspice console. No graphics interface is provided. A
warning message will be issued upon starting ngspice. However, you may invoke ’gnuplot’ for
plotting (see 17.5.26).

32.2.6 make ngspice with CYGWIN and external MINGW32

The next two compilation options are deprecated and not tested any more!

according to http://www.geocrawler.com/lists/3/SourceForge/6013/0/7321042/

$ cd ngspice

$ export PATH="/cygdrive/g/gcc_mingw/bin:$PATH"

$ autoconf

$ rm config.cache

$ ./configure --with-wingui --prefix="/cygdrive/g/gcc_mingw/bin"

$ make clean

$ make 2> make.err

$ cp config.h config_ming.h

ngspice.exe is o.k.,but make tests does not work (cannot direct console output into file). Needs
to add .save "what" "where.test" to every input (*.cir) file. Also all given output files have to
be adapted to WINDOWS (CR/LF instead of only LF at each line ending) for allowing proper
comparison.

32.2.7 make ngspice with CYGWIN and internal MINGW32 (use con-
fig.h made above)

$ cd ngspice

$ rm config.cache

$ export CFLAGS="-mno-cygwin -g -O2"

$ export LDFLAGS="-L/lib/mingw"

$ export CPPFLAGS="-I/usr/include/mingw"

$ ./configure --with-wingui

$ cp config_ming.h config.h

$ make clean

$ make 2> make.err

./configure does not work correctly: It finds headers and libs which are not really available
in the -mno-cygwin port of MINGW32. Therefore config.h is not o.k.

To-Do: find appropriate presets for variables ? rewrite tests for headers and libs (search exclu-
sively in mingw directories)
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32.3 Reporting errors

Setting up ngspice is a complex task. The source code contains over 1500 files. ngspice should
run on various operating systems. Therefore errors may be found, some still evolving from the
original spice3f5 code, others introduced during the ongoing code enhancements.

If you happen to experience an error during compilation of ngspice, please send a report to the
development team. Ngspice is hosted on sourceforge, the preferred place to post a bug report is
the ngspice bug tracker. We would prefer to have your bug tested against the actual source code
available at Git, but of course a report using the most recent ngspice release is welcome! Please
provide the following information with your report:

Ngspice version

Operating system

Small input file to reproduce the bug (if to report a runtime error)

Actual output versus the expected output

http://sourceforge.net/tracker/?group_id=38962&atid=423915


Chapter 33

Copyrights and licenses

33.1 Documentation license

33.1.1 Spice documentation copyright

Copyright 1996 The Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for educa-
tional, research and non-profit purposes, without fee, and without a written agreement is hereby
granted, provided that the above copyright notice, this paragraph and the following three para-
graphs appear in all copies. This software program and documentation are copyrighted by The
Regents of the University of California. The software program and documentation are supplied
"as is", without any accompanying services from The Regents. The Regents does not warrant
that the operation of the program will be uninterrupted or error-free. The end-user understands
that the program was developed for research purposes and is advised not to rely exclusively on
the program for any reason.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA
SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BA-
SIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

33.1.2 XSPICE SOFTWARE (documentation) copyright

Code added to SPICE3 to create the XSPICE Simulator and the XSPICE Code Model Subsys-
tem was developed at the Computer Science and Information Technology Laboratory, Georgia
Tech Research Institute, Atlanta GA, and is covered by license agreement the following copy-
right:
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Copyright © 1992 Georgia Tech Research Corporation All Rights Reserved. This material may
be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
at DFARS 252.227-7013 (Oct. 1988)

Refer to U.C. Berkeley and Georgia Tech license agreements for additional information.

This license is now superseded by chapt. 33.2.2

33.1.3 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by
33.2.1)

This chapter specifies the terms under which the CIDER software and documentation coming
with the original distribution are provided. This agreement is superseded by 33.2.1, the “modi-
fied” BSD license.

Software is distributed as is, completely without warranty or service support. The University of
California and its employees are not liable for the condition or performance of the software.

The University does not warrant that it owns the copyright or other proprietary rights to all soft-
ware and documentation provided under this agreement, notwithstanding any copyright notice,
and shall not be liable for any infringement of copyright or proprietary rights brought by third
parties against the recipient of the software and documentation provided under this agreement.

THE UNIVERSITY OF CALIFORNIA HEREBY DISCLAIMS ALL IMPLIED WARRANTIES,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE UNIVERSITY IS NOT LIABLE FOR ANY DAM-
AGES INCURRED BY THE RECIPIENT IN USE OF THE SOFTWARE AND DOCUMEN-
TATION, INCLUDING DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES.

The University of California grants the recipient the right to modify, copy, and redistribute the
software and documentation, both within the recipient’s organization and externally, subject to
the following restrictions:

(a) The recipient agrees not to charge for the University of California code itself. The recipient
may, however, charge for additions, extensions, or support.

(b) In any product based on the software, the recipient agrees to acknowledge the research group
that developed the software. This acknowledgment shall appear in the product documentation.

(c) The recipient agrees to obey all U.S. Government restrictions governing redistribution or
export of the software and documentation.

All BSD licenses have been changed to the “modified” BSD license by UCB in 1999 (see chapt.
33.2.1).

33.2 ngspice license

The SPICE license is the “Modified” BSD license,
(see http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm).
ngspice adopts this “Modified” BSD license as well for all of its source code (except of

http://embedded.eecs.berkeley.edu/pubs/downloads/spice/index.htm
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tclspice, and numparam which are under LGPLv2, and XSPICE, which is public domain
(see 33.2.2))!

*****************************************************************************

Copyright (c) 1985-1991 The Regents of the University of California.

All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to
use, copy, modify, and distribute this software and its documentation for any purpose, provided
that the above copyright notice and the following two paragraphs appear in all copies of this
software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS
ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFT-
WARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UP-
DATES, ENHANCEMENTS, OR MODIFICATIONS.

*****************************************************************************

33.2.1 “Modified” BSD license

All “old” BSD licenses (of SPICE or CIDER) have been changed to the “modified” BSD license
according to the following publication
(see ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change):

July 22, 1999

To All Licensees, Distributors of Any Version of BSD:

As you know, certain of the Berkeley Software Distribution ("BSD") source code files require
that further distributions of products containing all or portions of the software, acknowledge
within their advertising materials that such products contain software developed by UC Berke-
ley and its contributors.

Specifically, the provision reads:

" 3. All advertising materials mentioning features or use of this software must display the
following acknowledgment: This product includes software developed by the University of
California, Berkeley and its contributors."

Effective immediately, licensees and distributors are no longer required to include the acknowl-
edgment within advertising materials. Accordingly, the foregoing paragraph of those BSD Unix
files containing it is hereby deleted in its entirety.

William Hoskins

Director, Office of Technology Licensing

University of California, Berkeley

ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change
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33.2.2 XSPICE

According to http://users.ece.gatech.edu/mrichard/Xspice/ (as of Feb. 2012) the XSPICE source
code and documentation have been put into the public domain by the Georgia Institute of Tech-
nology.

33.2.3 tclspice, numparam

Both software packages are copyrighted and are released under LGPLv2
(see http://www.gnu.org/licenses/lgpl-2.1.html).

33.2.4 Linking to GPLd libraries (e.g. readline, fftw):

The readline manual at http://tiswww.case.edu/php/chet/readline/rltop.html states: Readline is
free software, distributed under the terms of the GNU General Public License, version 3. This
means that if you want to use Readline in a program that you release or distribute to anyone, the
program must be free software and have a GPL-compatible license.

According to http://www.gnu.org/licenses/license-list.html, the modified BSD license, thus
also the ngspice license, belongs to the family of GPL-Compatible Free Software Licenses.
Therefore the linking restrictions to readline, which have existed with the old BSD license, are
no longer in effect.

http://users.ece.gatech.edu/mrichard/Xspice/
http://www.gnu.org/licenses/lgpl-2.1.html
http://tiswww.case.edu/php/chet/readline/rltop.html
http://www.gnu.org/licenses/license-list.html

	I Ngspice User Manual
	1 Introduction
	1.1 Simulation Algorithms
	1.1.1 Analog Simulation 
	1.1.2 Digital Simulation 
	1.1.3 Mixed-Mode Simulation
	1.1.4 Mixed-Level Simulation

	1.2 Supported Analyses
	1.2.1 DC Analyses
	1.2.2 AC Small-Signal Analysis
	1.2.3 Transient Analysis
	1.2.4 Pole-Zero Analysis
	1.2.5 Small-Signal Distortion Analysis
	1.2.6 Sensitivity Analysis
	1.2.7 Noise Analysis
	1.2.8 Periodic Steady State Analysis 

	1.3 Analysis at Different Temperatures
	1.4 Convergence
	1.4.1 Voltage convergence criterion
	1.4.2 Current convergence criterion
	1.4.3 Convergence failure


	2 Circuit Description
	2.1 General Structure and Conventions
	2.1.1 Input file structure
	2.1.2 Circuit elements (device instances)
	2.1.3 Some naming conventions

	2.2 Basic lines
	2.2.1 .TITLE line
	2.2.2 .END Line
	2.2.3 Comments
	2.2.4 End-of-line comments

	2.3 .MODEL Device Models
	2.4 .SUBCKT Subcircuits
	2.4.1 .SUBCKT Line
	2.4.2 .ENDS Line
	2.4.3 Subcircuit Calls

	2.5 .GLOBAL
	2.6 .INCLUDE
	2.7 .LIB
	2.8 .PARAM Parametric netlists
	2.8.1 .param line
	2.8.2 Brace expressions in circuit elements: 
	2.8.3 Subcircuit parameters
	2.8.4 Symbol scope
	2.8.5 Syntax of expressions
	2.8.6 Reserved words 
	2.8.7 Alternative syntax

	2.9 .FUNC
	2.10 .CSPARAM
	2.11 .TEMP
	2.12 .IF Condition-Controlled Netlist
	2.13 Parameters, functions, expressions, and command scripts
	2.13.1 Parameters
	2.13.2 Nonlinear sources
	2.13.3 Control commands, Command scripts


	3 Circuit Elements and Models
	3.1 General options and information
	3.1.1 Simulating more devices in parallel
	3.1.2 Technology scaling
	3.1.3 Model binning
	3.1.4 Multiplier m, initial conditions

	3.2 Elementary Devices
	3.2.1 Resistors
	3.2.2 Semiconductor Resistors
	3.2.3 Semiconductor Resistor Model (R)
	3.2.4 Resistors, dependent on expressions (behavioral resistor)
	3.2.5 Capacitors
	3.2.6 Semiconductor Capacitors
	3.2.7 Semiconductor Capacitor Model (C)
	3.2.8 Capacitors, dependent on expressions (behavioral capacitor)
	3.2.9 Inductors
	3.2.10 Inductor model
	3.2.11 Coupled (Mutual) Inductors
	3.2.12 Inductors, dependent on expressions (behavioral inductor)
	3.2.13 Capacitor or inductor with initial conditions 
	3.2.14 Switches
	3.2.15 Switch Model (SW/CSW)


	4 Voltage and Current Sources
	4.1 Independent Sources for Voltage or Current
	4.1.1 Pulse
	4.1.2 Sinusoidal
	4.1.3 Exponential
	4.1.4 Piece-Wise Linear
	4.1.5 Single-Frequency FM
	4.1.6 Amplitude modulated source (AM)
	4.1.7 Transient noise source
	4.1.8 Random voltage source
	4.1.9 External voltage or current input
	4.1.10 Arbitrary Phase Sources 

	4.2 Linear Dependent Sources
	4.2.1 Gxxxx: Linear Voltage-Controlled Current Sources (VCCS)
	4.2.2 Exxxx: Linear Voltage-Controlled Voltage Sources (VCVS)
	4.2.3 Fxxxx: Linear Current-Controlled Current Sources (CCCS)
	4.2.4 Hxxxx: Linear Current-Controlled Voltage Sources (CCVS)
	4.2.5 Polynomial Source Compatibility 


	5 Non-linear Dependent Sources (Behavioral Sources)
	5.1 Bxxxx: Nonlinear dependent source (ASRC)
	5.1.1 Syntax and usage
	5.1.2 Special B-Source Variables time, temper, hertz
	5.1.3 par('expression')
	5.1.4 Piecewise Linear Function: pwl

	5.2 Exxxx: non-linear voltage source*
	5.2.1 VOL
	5.2.2 VALUE
	5.2.3 TABLE
	5.2.4 POLY
	5.2.5 LAPLACE

	5.3 Gxxxx: non-linear current source*
	5.3.1 CUR
	5.3.2 VALUE
	5.3.3 TABLE
	5.3.4 POLY
	5.3.5 LAPLACE
	5.3.6 Example

	5.4 Debugging a behavioral source

	6 Transmission Lines
	6.1 Lossless Transmission Lines
	6.2 Lossy Transmission Lines
	6.2.1 Lossy Transmission Line Model (LTRA)

	6.3 Uniform Distributed RC Lines
	6.3.1 Uniform Distributed RC Model (URC)

	6.4 KSPICE Lossy Transmission Lines
	6.4.1 Single Lossy Transmission Line (TXL)
	6.4.2 Coupled Multiconductor Line (CPL)


	7 Diodes
	7.1 Junction Diodes
	7.2 Diode Model (D)
	7.3 Diode Equations

	8 BJTs
	8.1 Bipolar Junction Transistors (BJTs)
	8.2 BJT Models (NPN/PNP)

	9 JFETs
	9.1 Junction Field-Effect Transistors (JFETs)
	9.2 JFET Models (NJF/PJF)
	9.2.1 JFET level 1 model with Parker Skellern modification
	9.2.2 JFET level 2 Parker Skellern model


	10 MESFETs
	10.1 MESFETs
	10.2 MESFET Models (NMF/PMF)
	10.2.1 Model by Statz e.a.
	10.2.2 Model by Ytterdal e.a.
	10.2.3 hfet1
	10.2.4 hfet2


	11 MOSFETs
	11.1 MOSFET devices
	11.2 MOSFET models (NMOS/PMOS)
	11.2.1 MOS Level 1
	11.2.2 MOS Level 2
	11.2.3 MOS Level 3
	11.2.4 MOS Level 6
	11.2.5 Notes on Level 1-6 models
	11.2.6 BSIM Models
	11.2.7 BSIM1 model (level 4)
	11.2.8 BSIM2 model (level 5)
	11.2.9 BSIM3 model (levels 8, 49)
	11.2.10 BSIM4 model (levels 14, 54)
	11.2.11 EKV model
	11.2.12 BSIMSOI models (levels 10, 58, 55, 56, 57)
	11.2.13 SOI3 model (level 60)
	11.2.14 HiSIM models of the University of Hiroshima


	12 Mixed-Mode and Behavioral Modeling with XSPICE
	12.1 Code Model Element & .MODEL Cards 
	12.2 Analog Models 
	12.2.1 Gain
	12.2.2 Summer
	12.2.3 Multiplier
	12.2.4 Divider
	12.2.5 Limiter
	12.2.6 Controlled Limiter
	12.2.7 PWL Controlled Source
	12.2.8 Filesource
	12.2.9 multi_input_pwl block
	12.2.10 Analog Switch
	12.2.11 Zener Diode
	12.2.12 Current Limiter
	12.2.13 Hysteresis Block
	12.2.14 Differentiator
	12.2.15 Integrator
	12.2.16 S-Domain Transfer Function
	12.2.17 Slew Rate Block
	12.2.18 Inductive Coupling
	12.2.19 Magnetic Core
	12.2.20 Controlled Sine Wave Oscillator
	12.2.21 Controlled Triangle Wave Oscillator
	12.2.22 Controlled Square Wave Oscillator
	12.2.23 Controlled One-Shot
	12.2.24 Capacitance Meter
	12.2.25 Inductance Meter
	12.2.26 Memristor

	12.3 Hybrid Models 
	12.3.1 Digital-to-Analog Node Bridge
	12.3.2 Analog-to-Digital Node Bridge
	12.3.3 Controlled Digital Oscillator
	12.3.4 Node bridge from digital to real with enable
	12.3.5 A Z**-1 block working on real data
	12.3.6 A gain block for event-driven real data
	12.3.7 Node bridge from real to analog voltage

	12.4 Digital Models 
	12.4.1 Buffer
	12.4.2 Inverter
	12.4.3 And
	12.4.4 Nand
	12.4.5 Or
	12.4.6 Nor
	12.4.7 Xor
	12.4.8 Xnor
	12.4.9 Tristate
	12.4.10 Pullup
	12.4.11 Pulldown
	12.4.12 D Flip Flop
	12.4.13 JK Flip Flop
	12.4.14 Toggle Flip Flop
	12.4.15 Set-Reset Flip Flop
	12.4.16 D Latch
	12.4.17 Set-Reset Latch
	12.4.18 State Machine
	12.4.19 Frequency Divider
	12.4.20 RAM
	12.4.21 Digital Source

	12.5 Predefined Node Types for event driven simulation 
	12.5.1 Digital Node Type
	12.5.2 Real Node Type 
	12.5.3 Int Node Type 
	12.5.4 (Digital) Input/Output


	13 Verilog A Device models
	13.1 Introduction
	13.2 adms
	13.3 How to integrate a Verilog-A model into ngspice
	13.3.1 How to setup a *.va model for ngspice
	13.3.2 Adding admsXml to your build environment


	14 Mixed-Level Simulation (ngspice with TCAD)
	14.1 Cider
	14.2 GSS, Genius

	15 Analyses and Output Control (batch mode)
	15.1 Simulator Variables (.options)
	15.1.1 General Options
	15.1.2 DC Solution Options
	15.1.3 AC Solution Options
	15.1.4 Transient Analysis Options
	15.1.5 ELEMENT Specific options
	15.1.6 Transmission Lines Specific Options
	15.1.7 Precedence of option and .options commands

	15.2 Initial Conditions
	15.2.1 .NODESET: Specify Initial Node Voltage Guesses
	15.2.2 .IC: Set Initial Conditions

	15.3 Analyses
	15.3.1 .AC: Small-Signal AC Analysis
	15.3.2 .DC: DC Transfer Function
	15.3.3 .DISTO: Distortion Analysis
	15.3.4 .NOISE: Noise Analysis
	15.3.5 .OP: Operating Point Analysis
	15.3.6 .PZ: Pole-Zero Analysis
	15.3.7 .SENS: DC or Small-Signal AC Sensitivity Analysis
	15.3.8 .TF: Transfer Function Analysis
	15.3.9 .TRAN: Transient Analysis
	15.3.10 Transient noise analysis (at low frequency)
	15.3.11 .PSS: Periodic Steady State Analysis

	15.4 Measurements after AC, DC and Transient Analysis
	15.4.1 .meas(ure)
	15.4.2 batch versus interactive mode
	15.4.3 General remarks
	15.4.4 Input
	15.4.5 Trig Targ
	15.4.6 Find ... When
	15.4.7 AVG|MIN|MAX|PP|RMS|MIN_AT|MAX_AT
	15.4.8 Integ
	15.4.9 param
	15.4.10 par('expression')
	15.4.11 Deriv
	15.4.12 More examples

	15.5 Safe Operating Area (SOA) warning messages
	15.5.1 Resistor and Capacitor SOA model parameters
	15.5.2 Diode SOA model parameter
	15.5.3 BJT SOA model parameter
	15.5.4 MOS SOA model parameter

	15.6 Batch Output
	15.6.1 .SAVE: Name vector(s) to be saved in raw file
	15.6.2 .PRINT Lines
	15.6.3 .PLOT Lines
	15.6.4 .FOUR: Fourier Analysis of Transient Analysis Output
	15.6.5 .PROBE: Name vector(s) to be saved in raw file
	15.6.6 par('expression'): Algebraic expressions for output
	15.6.7 .width


	16 Starting ngspice
	16.1 Introduction
	16.2 Where to obtain ngspice
	16.3 Command line options for starting ngspice and ngnutmeg
	16.4 Starting options
	16.4.1 Batch mode
	16.4.2 Interactive mode 
	16.4.3 Control mode (Interactive mode with control file or control section)

	16.5 Standard configuration file spinit
	16.6 User defined configuration file .spiceinit
	16.7 Environmental variables
	16.7.1 Ngspice specific variables
	16.7.2 Common environment variables

	16.8 Memory usage
	16.9 Simulation time
	16.10 Ngspice on multi-core processors using OpenMP
	16.10.1 Introduction
	16.10.2 Some results
	16.10.3 Usage
	16.10.4 Literature

	16.11 Server mode option -s
	16.12 Ngspice control via input, output fifos
	16.13 Compatibility
	16.13.1 Compatibility mode
	16.13.2 Missing functions
	16.13.3 Devices
	16.13.4 Controls and commands

	16.14 Tests
	16.15 Reporting bugs and errors

	17 Interactive Interpreter
	17.1 Introduction
	17.2 Expressions, Functions, and Constants
	17.3 Plots
	17.4 Command Interpretation
	17.4.1 On the console
	17.4.2 Scripts
	17.4.3 Add-on to circuit file

	17.5 Commands
	17.5.1 Ac*: Perform an AC, small-signal frequency response analysis
	17.5.2 Alias: Create an alias for a command
	17.5.3 Alter*: Change a device or model parameter
	17.5.4 Altermod*: Change model parameter(s) 
	17.5.5 Asciiplot: Plot values using old-style character plots
	17.5.6 Aspice*: Asynchronous ngspice run
	17.5.7 Bug: Mail a bug report
	17.5.8 Cd: Change directory
	17.5.9 Cdump: Dump the control flow to the screen
	17.5.10 Circbyline*: Enter a circuit line by line
	17.5.11 Codemodel*: Load an XSPICE code model library
	17.5.12 Compose: Compose a vector
	17.5.13 Dc*: Perform a DC-sweep analysis
	17.5.14 Define: Define a function
	17.5.15 Deftype: Define a new type for a vector or plot
	17.5.16 Delete*: Remove a trace or breakpoint
	17.5.17 Destroy: Delete an output data set
	17.5.18 Devhelp: information on available devices
	17.5.19 Diff: Compare vectors
	17.5.20 Display: List known vectors and types
	17.5.21 Echo: Print text
	17.5.22 Edit*: Edit the current circuit
	17.5.23 Eprint*: Print an event driven node (only used with XSPICE option)
	17.5.24 FFT: fast Fourier transform of vectors
	17.5.25 Fourier: Perform a Fourier transform
	17.5.26 Gnuplot: Graphics output via Gnuplot
	17.5.27 Hardcopy: Save a plot to a file for printing
	17.5.28 Help: Print summaries of Ngspice commands 
	17.5.29 History: Review previous commands
	17.5.30 Inventory: Print circuit inventory
	17.5.31 Iplot*: Incremental plot
	17.5.32 Jobs*: List active asynchronous ngspice runs
	17.5.33 Let: Assign a value to a vector
	17.5.34 Linearize*: Interpolate to a linear scale
	17.5.35 Listing*: Print a listing of the current circuit
	17.5.36 Load: Load rawfile data
	17.5.37 Meas*: Measurements on simulation data
	17.5.38 Mdump*: Dump the matrix values to a file (or to console)
	17.5.39 Mrdump*: Dump the matrix right hand side values to a file (or to console)
	17.5.40 Noise*: Noise analysis
	17.5.41 Op*: Perform an operating point analysis
	17.5.42 Option*: Set a ngspice option
	17.5.43 Plot: Plot values on the display
	17.5.44 Pre_<command>: execute commands prior to parsing the circuit
	17.5.45 Print: Print values
	17.5.46 Quit: Leave Ngspice or Nutmeg
	17.5.47 Rehash: Reset internal hash tables
	17.5.48 Remcirc*: Remove the current circuit
	17.5.49 Reset*: Reset an analysis
	17.5.50 Reshape: Alter the dimensionality or dimensions of a vector
	17.5.51 Resume*: Continue a simulation after a stop
	17.5.52 Rspice*: Remote ngspice submission
	17.5.53 Run*: Run analysis from the input file
	17.5.54 Rusage: Resource usage
	17.5.55 Save*: Save a set of outputs
	17.5.56 Sens*: Run a sensitivity analysis
	17.5.57 Set: Set the value of a variable
	17.5.58 Setcirc*: Change the current circuit
	17.5.59 Setplot: Switch the current set of vectors
	17.5.60 Setscale: Set the scale vector for the current plot
	17.5.61 Settype: Set the type of a vector
	17.5.62 Shell: Call the command interpreter
	17.5.63 Shift: Alter a list variable
	17.5.64 Show*: List device state
	17.5.65 Showmod*: List model parameter values
	17.5.66 Snload*: Load the snapshot file
	17.5.67 Snsave*: Save a snapshot file
	17.5.68 Source: Read a ngspice input file
	17.5.69 Spec: Create a frequency domain plot
	17.5.70 Status*: Display breakpoint information
	17.5.71 Step*: Run a fixed number of time-points
	17.5.72 Stop*: Set a breakpoint
	17.5.73 Strcmp: Compare two strings
	17.5.74 Sysinfo*: Print system information
	17.5.75 Tf*: Run a Transfer Function analysis
	17.5.76 Trace*: Trace nodes
	17.5.77 Tran*: Perform a transient analysis
	17.5.78 Transpose: Swap the elements in a multi-dimensional data set
	17.5.79 Unalias: Retract an alias
	17.5.80 Undefine: Retract a definition
	17.5.81 Unlet: Delete the specified vector(s)
	17.5.82 Unset: Clear a variable
	17.5.83 Version: Print the version of ngspice
	17.5.84 Where*: Identify troublesome node or device
	17.5.85 Wrdata: Write data to a file (simple table)
	17.5.86 Write: Write data to a file (Spice3f5 format)
	17.5.87 Wrs2p: Write scattering parameters to file (Touchstone® format)
	17.5.88 Xgraph: use the xgraph(1) program for plotting.

	17.6 Control Structures
	17.6.1 While - End
	17.6.2 Repeat - End
	17.6.3 Dowhile - End
	17.6.4 Foreach - End
	17.6.5 If - Then - Else
	17.6.6 Label
	17.6.7 Goto
	17.6.8 Continue
	17.6.9 Break

	17.7 Internally predefined variables
	17.8 Scripts
	17.8.1 Variables
	17.8.2 Vectors
	17.8.3 Commands
	17.8.4 control structures
	17.8.5 Example script 'spectrum'
	17.8.6 Example script for random numbers
	17.8.7 Parameter sweep
	17.8.8 Output redirection

	17.9 Scattering parameters (s-parameters)
	17.9.1 Intro
	17.9.2 S-parameter measurement basics
	17.9.3 Usage

	17.10 MISCELLANEOUS (old stuff, has to be checked for relevance)
	17.11 Bugs (old stuff, has to be checked for relevance)

	18 Ngspice User Interfaces
	18.1 MS Windows Graphical User Interface
	18.2 MS Windows Console
	18.3 LINUX
	18.4 CygWin
	18.5 Error handling
	18.6 Postscript printing options
	18.7 Gnuplot
	18.8 Integration with CAD software and ``third party'' GUIs
	18.8.1 KJWaves
	18.8.2 GNU Spice GUI
	18.8.3 XCircuit
	18.8.4 GEDA
	18.8.5 CppSim
	18.8.6 NGSPICE Online
	18.8.7 Spicy Schematics
	18.8.8 MSEspice
	18.8.9 PartSim


	19 ngspice as shared library or dynamic link library
	19.1 Compile options
	19.1.1 How to get the sources
	19.1.2 LINUX, MINGW, CYGWIN
	19.1.3 MS Visual Studio

	19.2 Linking shared ngspice to a calling application
	19.2.1 Linking during creating the caller
	19.2.2 Loading at runtime

	19.3 Shared ngspice API
	19.3.1 structs and types defined for transporting data
	19.3.2 Exported functions
	19.3.3 Callback functions

	19.4 General remarks on using the API
	19.4.1 Loading a netlist
	19.4.2 Running the simulation
	19.4.3 Accessing data
	19.4.4 Altering model or device parameters
	19.4.5 Output
	19.4.6 Error handling

	19.5 Example applications
	19.6 ngspice parallel
	19.6.1 Go parallel!
	19.6.2 Additional exported functions
	19.6.3 Additional callback functions
	19.6.4 Parallel ngspice example


	20 TCLspice
	20.1 tclspice framework
	20.2 tclspice documentation
	20.3 spicetoblt
	20.4 Running TCLspice
	20.5 examples
	20.5.1 Active capacitor measurement
	20.5.2 Optimization of a linearization circuit for a Thermistor
	20.5.3 Progressive display

	20.6 Compiling
	20.6.1 LINUX
	20.6.2 MS Windows

	20.7 MS Windows 32 Bit binaries

	21 Example Circuits
	21.1 AC coupled transistor amplifier
	21.2 Differential Pair
	21.3 MOSFET Characterization
	21.4 RTL Inverter
	21.5 Four-Bit Binary Adder (Bipolar)
	21.6 Four-Bit Binary Adder (MOS)
	21.7 Transmission-Line Inverter

	22 Statistical circuit analysis
	22.1 Introduction
	22.2 Using random param(eters)
	22.3 Behavioral sources (B, E, G, R, L, C) with random control
	22.4 ngspice scripting language
	22.5 Monte-Carlo Simulation
	22.5.1 Example 1
	22.5.2 Example 2
	22.5.3 Example 3

	22.6 Data evaluation with Gnuplot

	23 Circuit optimization with ngspice
	23.1 Optimization of a circuit
	23.2 ngspice optimizer using ngspice scripts
	23.3 ngspice optimizer using tclspice
	23.4 ngspice optimizer using a Python script
	23.5 ngspice optimizer using ASCO
	23.5.1 Three stage operational amplifier
	23.5.2 Digital inverter
	23.5.3 Bandpass
	23.5.4 Class-E power amplifier


	24 Notes
	24.1 Glossary
	24.2 Acronyms and Abbreviations


	II XSPICE Software User's Manual
	25 XSPICE Basics
	25.1 ngspice with the XSPICE option
	25.2 The XSPICE Code Model Subsystem 
	25.3 XSPICE Top-Level Diagram

	26 Execution Procedures 
	26.1 Simulation and Modeling Overview
	26.1.1 Describing the Circuit 

	26.2 Circuit Description Syntax 
	26.2.1 XSPICE Syntax Extensions

	26.3 How to create code models

	27 Example circuits
	27.1 Amplifier with XSPICE model ``gain''
	27.2 XSPICE advanced usage
	27.2.1 Circuit example C3
	27.2.2 Running example C3


	28 Code Models and User-Defined Nodes 
	28.1 Code Model Data Type Definitions
	28.2 Creating Code Models
	28.3 Creating User-Defined Nodes
	28.4 Adding a new code model library
	28.5 Compiling and loading the new code model (library)
	28.6 Interface Specification File 
	28.6.1 The Name Table 
	28.6.2 The Port Table
	28.6.3 The Parameter Table
	28.6.4 Static Variable Table 

	28.7 Model Definition File 
	28.7.1 Macros 
	28.7.2 Function Library

	28.8 User-Defined Node Definition File
	28.8.1 Macros 
	28.8.2 Function Library 
	28.8.3 Example UDN Definition File 


	29 Error Messages 
	29.1 Preprocessor Error Messages 
	29.2 Simulator Error Messages 
	29.3 Code Model Error Messages 
	29.3.1 Code Model aswitch 
	29.3.2 Code Model climit 
	29.3.3 Code Model core 
	29.3.4 Code Model d_osc 
	29.3.5 Code Model d_source 
	29.3.6 Code Model d_state 
	29.3.7 Code Model oneshot 
	29.3.8 Code Model pwl 
	29.3.9 Code Model s_xfer 
	29.3.10 Code Model sine 
	29.3.11 Code Model square 
	29.3.12 Code Model triangle 



	III CIDER
	30 CIDER User’s Manual 
	30.1 SPECIFICATION
	30.1.1 Examples

	30.2 BOUNDARY, INTERFACE
	30.2.1 DESCRIPTION 
	30.2.2 PARAMETERS
	30.2.3 EXAMPLES

	30.3 COMMENT
	30.3.1 DESCRIPTION 
	30.3.2 EXAMPLES 

	30.4 CONTACT 
	30.4.1 DESCRIPTION 
	30.4.2 PARAMETERS 
	30.4.3 EXAMPLES 
	30.4.4 SEE ALSO 

	30.5 DOMAIN, REGION
	30.5.1 DESCRIPTION
	30.5.2 PARAMETERS
	30.5.3 EXAMPLES
	30.5.4 SEE ALSO

	30.6 DOPING
	30.6.1 DESCRIPTION
	30.6.2 PARAMETERS
	30.6.3 EXAMPLES 
	30.6.4 SEE ALSO

	30.7 ELECTRODE
	30.7.1 DESCRIPTION 
	30.7.2 PARAMETERS
	30.7.3 EXAMPLES 
	30.7.4 SEE ALSO

	30.8 END 
	30.8.1 DESCRIPTION 

	30.9 MATERIAL 
	30.9.1 DESCRIPTION 
	30.9.2 PARAMETERS
	30.9.3 EXAMPLES
	30.9.4 SEE ALSO

	30.10 METHOD 
	30.10.1 DESCRIPTION 
	30.10.2 Parameters
	30.10.3 Examples

	30.11 Mobility
	30.11.1 Description
	30.11.2 Parameters
	30.11.3 Examples
	30.11.4 SEE ALSO 
	30.11.5 BUGS 

	30.12 MODELS 
	30.12.1 DESCRIPTION 
	30.12.2 Parameters
	30.12.3 Examples
	30.12.4 See also
	30.12.5 Bugs

	30.13 OPTIONS 
	30.13.1 DESCRIPTION 
	30.13.2 Parameters
	30.13.3 Examples
	30.13.4 See also

	30.14 OUTPUT 
	30.14.1 DESCRIPTION 
	30.14.2 Parameters
	30.14.3 Examples
	30.14.4 SEE ALSO 

	30.15 TITLE
	30.15.1 DESCRIPTION 
	30.15.2 EXAMPLES 
	30.15.3 BUGS 

	30.16 X.MESH, Y.MESH 
	30.16.1 DESCRIPTION 
	30.16.2 Parameters
	30.16.3 EXAMPLES 
	30.16.4 SEE ALSO

	30.17 NUMD 
	30.17.1 DESCRIPTION 
	30.17.2 Parameters
	30.17.3 EXAMPLES 
	30.17.4 SEE ALSO 
	30.17.5 BUGS 

	30.18 NBJT
	30.18.1 DESCRIPTION
	30.18.2 Parameters
	30.18.3 EXAMPLES 
	30.18.4 SEE ALSO 
	30.18.5 BUGS 

	30.19 NUMOS 
	30.19.1 DESCRIPTION
	30.19.2 Parameters
	30.19.3 EXAMPLES 
	30.19.4 SEE ALSO 

	30.20 Cider examples


	IV Appendices
	31 Model and Device Parameters
	31.1 Accessing internal device parameters
	31.2 Elementary Devices
	31.2.1 Resistor
	31.2.2 Capacitor - Fixed capacitor
	31.2.3 Inductor - Fixed inductor
	31.2.4 Mutual - Mutual Inductor

	31.3 Voltage and current sources
	31.3.1 ASRC - Arbitrary source
	31.3.2 Isource - Independent current source
	31.3.3 Vsource - Independent voltage source
	31.3.4 CCCS - Current controlled current source
	31.3.5 CCVS - Current controlled voltage source
	31.3.6 VCCS - Voltage controlled current source
	31.3.7 VCVS - Voltage controlled voltage source

	31.4 Transmission Lines
	31.4.1 CplLines - Simple Coupled Multiconductor Lines
	31.4.2 LTRA - Lossy transmission line
	31.4.3 Tranline - Lossless transmission line
	31.4.4 TransLine - Simple Lossy Transmission Line
	31.4.5 URC - Uniform R. C. line

	31.5 BJTs
	31.5.1 BJT - Bipolar Junction Transistor
	31.5.2 BJT - Bipolar Junction Transistor Level 2
	31.5.3 VBIC - Vertical Bipolar Inter-Company Model

	31.6 MOSFETs
	31.6.1 MOS1 - Level 1 MOSFET model with Meyer capacitance model
	31.6.2 MOS2 - Level 2 MOSFET model with Meyer capacitance model
	31.6.3 MOS3 - Level 3 MOSFET model with Meyer capacitance model 
	31.6.4 MOS6 - Level 6 MOSFET model with Meyer capacitance model 
	31.6.5 MOS9 - Modified Level 3 MOSFET model 
	31.6.6 BSIM1 - Berkeley Short Channel IGFET Model
	31.6.7 BSIM2 - Berkeley Short Channel IGFET Model
	31.6.8 BSIM3
	31.6.9 BSIM4


	32 Compilation notes
	32.1 Ngspice Installation under LINUX (and other 'UNIXes')
	32.1.1 Prerequisites
	32.1.2 Install from Git
	32.1.3 Install from a tarball, e.g. ngspice-rework-25.tgz
	32.1.4 Compilation using an user defined directory tree for object files 
	32.1.5 Advanced Install
	32.1.6 Compilers and Options
	32.1.7 Compiling For Multiple Architectures 
	32.1.8 Installation Names
	32.1.9 Optional Features
	32.1.10 Specifying the System Type
	32.1.11 Sharing Defaults
	32.1.12 Operation Controls

	32.2 Ngspice Compilation under WINDOWS OS 
	32.2.1 How to make ngspice with MINGW and MSYS 
	32.2.2 64 Bit executables with MINGW-w64
	32.2.3 make ngspice with MS Visual Studio 2008 or 2010
	32.2.4 make ngspice with pure CYGWIN
	32.2.5 ngspice mingw or cygwin console executable w/o graphics
	32.2.6 make ngspice with CYGWIN and external MINGW32
	32.2.7 make ngspice with CYGWIN and internal MINGW32 (use config.h made above)

	32.3 Reporting errors

	33 Copyrights and licenses
	33.1 Documentation license
	33.1.1 Spice documentation copyright
	33.1.2 XSPICE SOFTWARE (documentation) copyright
	33.1.3 CIDER RESEARCH SOFTWARE AGREEMENT (superseded by 33.2.1)

	33.2 ngspice license
	33.2.1  ``Modified'' BSD license
	33.2.2 XSPICE
	33.2.3 tclspice, numparam
	33.2.4 Linking to GPLd libraries (e.g. readline, fftw):




